Stage II.—The cut plates should next have any roughness removed from the edges, then punched with two holes—one at each end, followed by leveling or setting. This is done by hammering carefully on a true flat surface.

Stage III.—The plates should then be taken and dipped into a hydrochloric acid bath made up of equal quantities of the acid and water. The plates are then raised to a red heat in the stoves, and on removal it will be found that the scale—iron oxide—has become loosened, and will readily fall off, leaving a clean metallic surface. A second course of cleaning then follows in diluted sulphuric acid—1 part acid to 20 parts water. In this bath the iron may be kept for about 12 hours. In some cases a much stronger bath is used, and the plates are left in only a very short time. The bath is constructed of hard wood coated inside with suitable varnish.

In mixing the sulphuric acid bath it must be remembered that the acid should be slowly poured into the water under continuous stirring. Following the bath, the metal is rinsed in water, after which it is thoroughly scoured with fine flinty sand. Rinsing again follows, but in boiling water, and then the metal is allowed to dry. The enameling process should immediately follow the drying, for if kept for any length of time the surface of the metal again becomes oxidized. In hollow-ware enameling the hydrochloric acid bath may be omitted.

Stage IV.—The plates are now ready for the reception of the foundation or gray coating. If powder is used the plate is wiped over with a gum solution, and then the powder is carefully and uniformly dusted through a fine sieve over the surface. The plate is then reversed and the operation repeated on the other side. If a liquid “gray” is to be used it should have a consistency of cream, and be poured or brushed with equal care over the two surfaces in succession, after the plate has been heated to be only just bearable to the touch. The plates are then put on rests, or petits, in a drying stove heated to about 160° F., and when thoroughly dry they are ready for the fusing operation. The petits, with the plates, are placed on a long fork fixed on a wagon, which can be moved backward and forward on rails; the door of the fusing oven is then raised and the wagon moved forward. The fork enters the oven just above fire clay brick supports arranged to receive the petits. The fork is then withdrawn and the door closed. The stove has a cherry-red, almost white, heat and in a few minutes the enamel coating has been uniformly melted, and the plates are ready to be removed on the petits and fork in the same manner as they were inserted. Rapid cooling must now be carefully avoided, otherwise the enamel and the iron will be liable to separate, and chipping will result. The temperature of fusion should be about 2,192° F.† When all the plates have been thus prepared they are carefully examined and defective ones laid aside, the others being now ready for the next operation. {296}

† Melting a piece of copper will approximately represent this temperature.

Stage V.—The coating of the plate with white is the next stage. The temperature of fusion of the white glaze is lower than that of the gray, so that the plate will remain a shorter time in the stove, or be submitted to a somewhat lower temperature. The latter system is to be strongly recommended in order to prevent any possibility of fusion of the ground mass. The white should be made as liquid as possible consistent with good results. The advantages of thin coatings have already been explained, but if the mixing is too thin the ground coating will not only be irregularly covered. but, in fusion, bubbles will be produced, owing to the steam escaping, and these are fatal to the sale of any kind of enameled ware. When the plate has been thoroughly dried and fusion has taken place, slow and steady cooling is absolutely essential. Special muffles are frequently built for this purpose, and their use is the means of preventing a large number of wasters. Before putting on the glaze, care must be taken to remove the gray from any part which is not to be coated. The temperature of fusion should be about 1,890° F.,† and the time taken is about 5 minutes.

† Melting a piece of brass will represent this temperature.

Stage VI.—The stencil must be cut with perfect exactitude. The letters should be as clear as possible, proportioned, and spaced to obtain the best effects as regards boldness and appearance. Stencils may be cut either from paper or from specially prepared soft metal, called stencil metal. The former are satisfactory enough when only a few plates are required from one stencil, but when large quantities are required, say, 60 upward, metal stencils should be used. The paper should be thick, tough, and strong, and is prepared in the following manner: Shellac is dissolved in methylated spirits to the ordinary liquid gum form, and this is spread over both sides of the paper with a brush. When thoroughly dry a second protective coating is added, and the paper is then ready for stencil work. The stencil cutter’s outfit consists of suitable knives, steel rule, scales of various fractions to an inch, a large sheet of glass on which the cutting is done, and alphabets and numerals of various characters and types. For ordinary lettering one stencil is enough, but for more intricate designs 2, 3, and even 4 stencils may be required. In the preparation of the plates referred to in the paragraph preceding Stage I, only 1 stencil would be necessary. The paper before preparation would be measured out to the exact size of the plate, and the letters would be drawn in. The cutting would then be done, and the result shown at Fig. 1 would be obtained, the black parts being cut out. The lines or corners of each letter or figure should be perfectly clear and clean, for any flaw in the stencil will be reproduced on the plate.

Fig. 1