2. Some alloys, as copper and zinc, copper and arsenic, may be formed by exposing heated plates of the least fusible metal to the vapor of the other. In making brass in the large way, thin plates of copper are dissolved, as it were, in melted zinc until the proper proportions have been obtained.
3. The surface of all oxidizable metals should be covered with some protecting agent, as tallow for very fusible ones, rosin for lead and tin, charcoal for zinc, copper, etc.
4. Stir the metal before casting and if possible, when casting, with a whitewood stick; this is much better for the purpose than an iron rod.
5. If possible, add a small portion of old alloy to the new. If the alloy is required to make sharp castings and strength is not a very great object, the proportion of old alloy to the new should be increased. In all cases a new or thoroughly well-cleansed crucible should be used.
To obtain metals and metallic alloys from their compounds, such as oxides, sulphides, chlorides, etc., a process lately patented makes use of the reducing qualities of aluminum or its alloys with magnesium. The finely powdered material (e. g., chromic oxide) is placed in a crucible mixed with aluminum oxide. The mixture is set afire by means of a soldering pipe or a burning magnesium wire, and the desired reaction takes place. For igniting, one may also employ with advantage a special priming cartridge consisting of pulverized aluminum to which a little magnesium may be mixed, and peroxide of magnesia, which is shaped into balls and lighted with a magnesium wire. By suitable additions to the pulverized mixture, alloys containing aluminum, magnetism, chromium, manganese, copper, iron, boron, silicic acid, etc., are obtained.
Aluminum Alloys.
M. H. Pecheux has contributed to the Comptes Rendus, from time to time, the results of his investigations into the alloys of aluminum with soft metals, and the following constitutes a brief summary of his observations: