2. I was the first to prove by actual experiment that, in order to develop magnetic power at a distance, a galvanic battery of intensity must be employed to project the current through the long conductor, and that a magnet surrounded by many turns of one long wire must be used to receive this current.
3. I was the first actually to magnetize a piece of iron at a distance, and to call attention to the fact of the applicability of my experiments to the telegraph.
4. I was the first to actually sound a bell at a distance by means of the electro-magnet.
5. The principles I had developed were applied by Dr. Gale to render Morse's machine effective at a distance.
THE FIRST ATLANTIC CABLES
George Iles
[From “Flame, Electricity and the Camera,” copyright Doubleday, Page & Co., New York.]
Electric telegraphy on land has put a vast distance between itself and the mechanical signalling of Chappé, just as the scope and availability of the French invention are in high contrast with the rude signal fires of the primitive savage. As the first land telegraphs joined village to village, and city to city, the crossing of water came in as a minor incident; the wires were readily committed to the bridges which spanned streams of moderate width. Where a river or inlet was unbridged, or a channel was too wide for the roadway of the engineer, the question arose, May we lay an electric wire under water? With an ordinary land line, air serves as so good a non-conductor and insulator that as a rule cheap iron may be employed for the wire instead of expensive copper. In the quest for non-conductors suitable for immersion in rivers, channels, and the sea, obstacles of a stubborn kind were confronted. To overcome them demanded new materials, more refined instruments, and a complete revision of electrical philosophy.