“Not in any known form.”
“What is it?”
“I don't know.”
And the discoverer of the X rays thus stated as calmly his ignorance of their essence as has everybody else who has written on the phenomena thus far.
“Having discovered the existence of a new kind of rays, I of course began to investigate what they would do.” He took up a series of cabinet-sized photographs. “It soon appeared from tests that the rays had penetrative powers to a degree hitherto unknown. They penetrated paper, wood, and cloth with ease; and the thickness of the substance made no perceptible difference, within reasonable limits.” He showed photographs of a box of laboratory weights of platinum, aluminum, and brass, they and the brass hinges all having been photographed from a closed box, without any indication of the box. Also a photograph of a coil of fine wire, wound on a wooden spool, the wire having been photographed, and the wood omitted. “The rays,” he continued, “passed through all the metals tested, with a facility varying, roughly speaking, with the density of the metal. These phenomena I have discussed carefully in my report to the Würzburg society, and you will find all the technical results therein stated.” He showed a photograph of a small sheet of zinc. This was composed of smaller plates soldered laterally with solders of different metallic proportions. The differing lines of shadow, caused by the difference in the solders, were visible evidence that a new means of detecting flaws and chemical variations in metals had been found. A photograph of a compass showed the needle and dial taken through the closed brass cover. The markings of the dial were in red metallic paint, and thus interfered with the rays, and were reproduced. “Since the rays had this great penetrative power, it seemed natural that they should penetrate flesh, and so it proved in photographing the hand, as I showed you.”
A detailed discussion of the characteristics of his rays the professor considered unprofitable and unnecessary. He believes, though, that these mysterious radiations are not light, because their behaviour is essentially different from that of light rays, even those light rays which are themselves invisible. The Röntgen rays cannot be reflected by reflecting surfaces, concentrated by lenses, or refracted or diffracted. They produce photographic action on a sensitive film, but their action is weak as yet, and herein lies the first important field of their development. The professor's exposures were comparatively long—an average of fifteen minutes in easily penetrable media, and half an hour or more in photographing the bones of the hand. Concerning vacuum tubes, he said that he preferred the Hittorf, because it had the most perfect vacuum, the highest degree of air exhaustion being the consummation most desirable. In answer to a question, “What of the future?” he said:
“I am not a prophet, and I am opposed to prophesying. I am pursuing my investigations, and as fast as my results are verified I shall make them public.”
“Do you think the rays can be so modified as to photograph the organs of the human body?”
In answer he took up the photograph of the box of weights. “Here are already modifications,” he said, indicating the various degrees of shadow produced by the aluminum, platinum, and brass weights, the brass hinges, and even the metallic stamped lettering on the cover of the box, which was faintly perceptible.
“But Professor Neusser has already announced that the photographing of the various organs is possible.”