As the news of the success of the Marconi telegraph made its way to the London Stock Exchange there was a fall in the shares of cable companies. The fear of rivalry from the new invention was baseless. As but fifteen words a minute are transmissible by the Marconi system, it evidently does not compete with a cable, such as that between France and England, which can transmit 2,500 words a minute without difficulty. The Marconi telegraph comes less as a competitor to old systems than as a mode of communication which creates a field of its own. We have seen what it may accomplish in war, far outdoing any feat possible to other apparatus, acoustic, luminous, or electrical. In quite as striking fashion does it break new ground in the service of commerce and trade. It enables lighthouses continually to spell their names, so that receivers aboard ship may give the steersmen their bearings even in storm and fog. In the crowded condition of the steamship “lanes” which cross the Atlantic, a priceless security against collision is afforded the man at the helm. On November 15, 1899, Marconi telegraphed from the American liner St. Paul to the Needles, sixty-six nautical miles away. On December 11 and 12, 1901, he received wireless signals near St. John's, Newfoundland, sent from Poldhu, Cornwall, England, or a distance of 1,800 miles,—a feat which astonished the world. In many cases the telegraphic business to an island is too small to warrant the laying of a cable; hence we find that Trinidad and Tobago are to be joined by the wireless system, as also five islands of the Hawaiian group, eight to sixty-one miles apart.

A weak point in the first Marconi apparatus was that anybody within the working radius of the sending-instrument could read its messages. To modify this objection secret codes were at times employed, as in commerce and diplomacy. A complete deliverance from this difficulty is promised in attuning a transmitter and a receiver to the same note, so that one receiver, and no other, shall respond to a particular frequency of impulses. The experiments which indicate success in this vital particular have been conducted by Professor Lodge.

Fig. 73—Discontinuous electric waves

Fig. 74—Wehnelt interrupter

When electricians, twenty years ago, committed energy to a wire and thus enabled it to go round a corner, they felt that they had done well. The Hertz waves sent abroad by Marconi ask no wire, as they find their way, not round a corner, but through a corner. On May 1, 1899, a party of French officers on board the Ibis at Sangatte, near Calais, spoke to Wimereux by means of a Marconi apparatus, with Cape Grisnez, a lofty promontory, intervening. In ascertaining how much the earth and the sea may obstruct the waves of Hertz there is a broad and fruitful field for investigation. “It may be,” says Professor John Trowbridge, “that such long electrical waves roll around the surface of such obstructions very much as waves of sound and of water would do.”

It is singular how discoveries sometimes arrive abreast of each other so as to render mutual aid, or supply a pressing want almost as soon as it is felt. The coherer in its present form is actuated by waves of comparatively low frequency, which rise from zero to full height in extremely brief periods, and are separated by periods decidedly longer ([Fig. 73]). What is needed is a plan by which the waves may flow either continuously or so near together that they may lend themselves to attuning. Dr. Wehnelt, by an extraordinary discovery, may, in all likelihood, provide the lacking device in the form of his interrupter, which breaks an electric circuit as often as two thousand times a second. The means for this amazing performance are simplicity itself ([Fig. 74]). A jar, a, containing a solution of sulphuric acid has two electrodes immersed in it; one of them is a lead plate of large surface, b; the other is a small platinum wire which protrudes from a glass tube, d. A current passing through the cell between the two metals at c is interrupted, in ordinary cases five hundred times a second, and in extreme cases four times as often, by bubbles of gas given off from the wire instant by instant.