So far as known to the writer of this article, patents, secret processes or trade agreements play no part in the control of quicksilver resources.
During the war Germany and her allies controlled the quicksilver deposits of Australia, Serbia, Turkey and probably European Russia. Only the Idria deposit, and perhaps the Zips deposit, in Austria, are important, and the available annual supply for the Teutonic allies was probably 25,000 to 30,000 flasks. The Entente allies controlled the deposits of the United States, yielding about 36,000 flasks annually; of Italy, yielding about 28,000 flasks; and controlled, although they did not own, the deposits of neutral Spain, yielding from 30,000 to 41,000 flasks annually. The Chinese mercury deposits were possibly drawn upon to some extent by Japan, who, like Britain and France, has no deposits of her own that are worth mentioning.
SUMMARY
The chief uses of mercury and mercury compounds, in general order of decreasing importance, are as follows: In the manufacture of drugs and chemicals, including calomel, corrosive sublimate, and glacial acetic acid; as a detonator for high explosives; as vermilion pigment; in electrical apparatus, thermostats, gas governors, and other appliances; in the amalgamation of gold and silver ores; in anti-fouling marine paint; in compounds to prevent boiler scale; in cosmetics; and in dental amalgam. There are comparatively few applications of mercury where a substitute could not be employed, although the substitute might not be as economical or as satisfactory.
In general the ores of quicksilver do not extend to great depths and show on the whole a close association with Tertiary and Quaternary igneous rocks that have not been subjected to long and deep erosion. There are some notable exceptions, however, to these generalizations. New deposits of mercury are most likely to be discovered on the eastern coast of Asia, in certain parts of Oceania, on the shores of the Mediterranean, or in the Cordilleran belts of North and South America. The known facts afford no secure basis for predicting that there will be within the next ten years any marked shift from the present main sources of supply to some newly discovered deposit.
The richest mercury deposits are at Almaden, central Spain; at Idria, Austria-Hungary; and in the Monte Amiata district of Italy. Other productive deposits are situated near Oviedo and Granada, Spain; in the Donetz coal basin, Russia; near Aidin, Turkey; in the province of Kweichow, China; in Oregon, California, Nevada, and Texas; in San Luis Potosi, Guerrero, and Durango, Mexico; and in Peru. Many deposits at present unproductive are known in other parts of the world.
The political control of the quicksilver deposits corresponds for the most part with geographic location. The rich deposits of Almaden, in Spain, and Idria, in old Austria-Hungary, are government-owned. The Spanish government, on the basis of competitive proposals, contracts with the successful bidder for the sale of the quicksilver for a period of ten years. The contract has been awarded to the Rothschilds of London for a number of successive periods. This control of the output of the Spanish mines gives the Rothschilds a control of the world’s quicksilver market. The Spanish government reserves a sufficient number of flasks annually for the national requirements of Spain. The Konia mine, in Asia Minor, has been the property of the Turkish government since 1912. It is believed that the most productive mines of the Monte Amiata district, Italy, were owned wholly or in part by the German Emperor; with the entry of Italy into the war they were seized by the Italian government. The mines of the United States are all controlled by corporations or individuals. It is believed that the mines of Mexico are owned by Mexican citizens, although British capital may be invested in some of them. The mines at Huancavelica, Peru, have been purchased by Señor E. E. Fernandini, of Lima.
CHAPTER XIX
BAUXITE AND ALUMINUM
By J. M. Hill
USES OF BAUXITE AND ALUMINUM
Bauxite, aluminum oxide, besides being the chief ore of aluminum, has an important use in the manufacture of artificial abrasives which are of wide application in all metal-fabricating industries. Bauxite is also the basis of an extensive chemical industry, being the crude material from which alum, aluminum sulphate, and several other chemicals used for water purification, dyeing, and tanning are made. A rapidly growing use for bauxite is in the manufacture of bauxite brick for furnace linings. The more essential uses of bauxite are for the manufacture of aluminum and abrasives, though it seems doubtful whether the utilization of bauxite for chemicals could be much restricted. The use of bauxite for refractories is relatively small. In 1917 nearly 65 per cent. of the domestic output of bauxite went into aluminum, nearly 13 per cent. was taken by manufactures of aluminum salts, 19 per cent. was consumed in the manufacture of bauxite abrasives, and 3 per cent. was used by makers of bauxite refractories.