Manganese.
—Manganese is far more than a ferro-alloy. It is essential in the manufacture of all open-hearth process and Bessemer process steel, which make up 99 per cent. of the total United States production, for it acts as a remover of the carbon which makes the difference in quality between steel and cast iron. For this purpose it is mixed with the iron in the form of alloys. One of these is high in manganese—ferromanganese—and one low—spiegeleisen.
The principal manganese fields are those of Russia, India, and Brazil, which are so large and readily available for exploitation and transportation to markets that there is little prospect that they will be displaced as the principal sources of the world’s supply for many years. In contrast with the situation regarding other important minerals, most manganese deposits throughout the world are owned by residents of the countries in which they occur. This is due to the superficial and irregular character of the oxide deposits (the only ones as a rule of high enough grade to find a market) and the simple nature of the mining and washing of ores, which does not require much capital.
The United States is poorly provided with high-grade manganese ores, and hence has always been and will always be a heavy importer. Previous to the war, the supplies were mostly drawn from Russia and India; and during the war from Brazil, in addition to an increased domestic production under the stimulus of high war prices. England, France, and Germany—in fact the whole industrial world—have the same sources of supply. There is little necessity of sharp competition, leading to commercial combinations, or of strict governmental control, since the productive capacity of the principal deposits is very large, and far exceeds the world’s demand for steel making.
Chromite.
—Next in importance in the ferro-alloy group of metals is chromium, found in nature on a commercial scale only as the oxide chromite. Chrome is used extensively in the steel industry and the leather industry—in the former for making a specially tough steel (and also a refractory lining for iron furnaces); in the latter, for tanning.
Chromite is found in many countries, but in most (as in the United States and Canada) in small and scattered deposits, easily exhausted. The largest and most important sources of supply are in the French colony of New Caledonia, in the South Pacific; in Rhodesia, in Africa; in Asia Minor; and in the Ural Mountains, Russia. Up to 1830 the Ural region supplied the world’s chromium; from 1830 to 1870, the Eastern United States (Maryland and Pennsylvania) became the chief source; from 1870 to about 1900 the scene of chief activity shifted to Asia Minor; and since then New Caledonian and Rhodesian ores have occupied the world’s markets. New Caledonian ore is produced with cheap labor, and the deposits are near the coast; and the Rhodesian deposits are large and rich. High prices during the war, due to lack of shipping, brought about a great increase of production in the Pacific States of the United States; but with a return to normal conditions this region cannot survive competition, unless especially protected by legislation.
In normal times, the United States consumes more than one-third of the world’s annual consumption of chromite, but depends upon foreign sources—Rhodesia and New Caledonia. During the war, deposits of limited extent in Brazil and Cuba were drawn on, as well as Canadian and domestic ores. So far as developed, however, the Western Hemisphere is relatively poor in chromite deposits. The chrome industry in the United States is highly centralized, the Electrometallurgical Company having an almost absolute monopoly of the ferrochrome industry, and being probably the largest producers of ferrochrome in the world, and the Mutual Chemical Company having a great preponderance in the chemical chrome industry.
The chromite supply of the world is therefore at present essentially a monopoly controlled by British-French capital, and the great supplies occur in the colonies of England and France.