The present expansion of the Japanese iron and steel industry is such that it is a question whether the consumption of iron products in Japan will be sufficient to take care of the entire output. It seems very probable that Japan is looking for a large export trade in iron and steel products. The Japanese may be ambitious not only to displace European and American goods in the Orient, but may even attempt to secure a market on the Pacific Coast of the United States and Canada. It is quite probable that Japanese manufactured articles will be able to compete in the western United States with articles manufactured in the eastern states and subject to heavy transportation rates. On the other hand, there is an active movement to start an iron industry on the Pacific Coast, and it is hoped that plants established there will be able to manufacture iron and steel products at a low enough cost to enable them to compete with Japanese products in the Orient.
CHAPTER IV
MANGANESE
By D. F. Hewett
USES OF MANGANESE
Alloys of manganese are essential in the manufacture of steel by the open-hearth and the Bessemer processes, which produce 99 per cent. of the total output of the United States. In this country, about 14 pounds of metallic manganese as alloys, equivalent to about 40 pounds of high-grade ore, is used in making a ton of average steel. Two alloys are in common use: ferromanganese and spiegeleisen. Ferromanganese, with 70 to 80 per cent. manganese, is largely used in making open-hearth steel carrying less than 0.30 per cent. carbon, whereas spiegeleisen, with 20 to 32 per cent. manganese, is used in making Bessemer steel carrying more than 0.30 per cent. carbon. The first group of low-carbon steels is used in making structural shapes, sheets, bars, wire, etc., and the second group of high-carbon steels is used in making rails, forgings, etc.
In making 70 to 80 per cent. ferromanganese, so-called “high-grade” ore with more than 35 per cent. manganese and less than 5 per cent. iron and 15 per cent. silica is needed. In making 20 to 32 per cent. spiegeleisen, so-called “low-grade” or ferruginous manganese ore with 10 to 35 per cent. manganese, 20 to 35 per cent. iron, and less than 20 per cent. silica is needed, although here and there spiegeleisen is made by mixing high-grade manganese ore with iron ore.
Several other alloys such as silico-manganese, ferro-silicon, and ferro-carbon-titanium may be used as partial substitutes for ferromanganese, but although they may be capable of wider use under stress, they are electric-furnace products and under normal conditions their cost is prohibitive.
Very pure manganese oxide is used in making the common dry battery, the production of which has greatly increased with the wide use of the internal-combustion engine. About 25,000 tons is used annually in the United States for this purpose. The manganese oxide thus used is not consumed, but becomes exhausted through the loss of oxygen. Under stress of high prices, the oxide may be regenerated by treatment or by mixture with new refined material.
Small quantities of manganese ore are used in making many chemical products and pigments.
CHANGES IN PRACTICE
Any consideration of the need for manganese ore and ferromanganese and of dependence upon foreign sources of supply should take account of the degree to which low-grade ore and spiegeleisen may be used as substitutes for high-grade ore and ferromanganese. Thus, although both Germany and the United States have only insignificant resources of high-grade ore, both possess unusually large reserves of low-grade ore. Under recent conditions in the United States the percentage of total manganese used as spiegeleisen increased in three years from 10 to about 18 per cent. Competent authorities have estimated that this substitution may be further increased to nearly 70 per cent. with slight modifications in practice and modest addition of equipment. Some competent engineers further contend that by other modifications of practice a large part of the manganese now needed as alloys may be eliminated by the addition of low-grade manganese ore during early stages of the smelting and refining process.