When a current of electricity runs along a wire there is in fact nothing more than a procession of electrons. The stream of electrons that runs through the filaments in the lamps that light this room, raising the filaments to a white heat, are set in motion by the dynamos in the city. There is a complete wire circuit, including the dynamo, the conductors, and the lamps. When the dynamos are not working the electrons do not as a whole move either way, though they are always there. When the dynamo begins to turn, the electrons set out on their continuous journey.

Electrons are involved in the emission of wireless signals, and in their receipt. The so-called 'valve', which multiplies minute electric signals and was so greatly improved during the war, depends entirely on the action of electrons, and the brilliant experimental work was based on the newly-acquired knowledge of their properties.

I have told you that under certain circumstances a stream of electrons may generate X-Rays, in reality a form of light rays. This action is a very common one, and it is curious that the faster the electron goes the shorter is the wave-length of the radiation. A very fast electron generates an X-Ray of so short a wave-length that the penetrating power of the ray, which goes with the shortness of the wave, is excessive, and in this way we may have rays which go right through the human body or even through inches of steel. As the speed of the exciting electron becomes less, the X-Rays are less penetrating. With still slower electrons we may generate ordinary light, and it will take a slower electron to generate red than to generate blue. The slowest electrons we use in this way have a speed of many hundred miles per second; the fastest have a speed which nearly approaches that of light, or 186,000 miles a second.

And conversely radiation can set electrons in motion. When X-Rays are driven into a patient's body electrons are set in motion within, and moving over certain minute distances, initiate chemical actions which are necessary to some cure. Or they may go right through the body and fall on a photographic plate, setting in operation chemical action which forms a picture on the plate.

There is another occasion of an entirely different kind when the electron is greatly in evidence and displays effects which are most astonishing and significant. Every atom of radium or other radio-active substances sooner or later meets with the catastrophe in which its life as radium ends and atoms of other substances are formed. At that moment occurs the emission which is the characteristic property of the substance. One of the radiations emitted consists of high-velocity electrons, moving, some of them, nearly as fast as light.

Now it is found that when the speed approaches that of light, 186,000 miles or 3 x 1010 centimetres per second, the energy is higher than it should be if it followed the usual rule, viz. energy is equal to half the mass multiplied by the square of the velocity. It would seem that an electron moving with the velocity of light would have infinite energy; or, to put the matter in another way, the experimenter in his laboratory can never hope to observe an electron moving so fast; it would be the end of his laboratory and of himself if ever it turned up.

Linked up with this result is the very strange fact that no one has ever been able to find any direct evidence of the existence of the ether, which is postulated in order to carry light-waves. It has been pictured as a medium through which the heavenly bodies move, and to which their motions may be referred. But when light is launched into the ether, its apparent velocity must depend on whether it travels with or against the drift of the ether through the laboratory where the measurement is made. The experiment has been performed without the discovery of any such difference, although the method was amply accurate enough to detect the effect that might be expected. It was afterwards shown that the negative result might be explained by supposing that a measure of length varied in length according to whether it was travelling with or against the ether. But the continual failure of all such experiments has led to a remarkable hypothetical development with which the name of Einstein is firmly connected. It is supposed that some flaw must exist in our fundamental hypotheses, and that if this were corrected we should then find that we ought to get the same value for the velocity of light however and whenever we measured it, and at the same time we should find that no measurement of the velocity of a body moving relative to the observer would ever equal the velocity of light. The hypothesis denies the existence of an absolute standard to which motions can be referred, and insists that they must all be considered relatively to the observer. It is called the principle of relativity. Calculations of its consequences begin with the necessary changes in the fundamentals, such as Einstein has introduced.[70]

Time does not allow me to say more of the innumerable ways in which electrons play an essential part in all the processes in the world. We have long believed that this is so, but the picture has never been so clear to us as it is now; and with our understanding our power is increased. Yet once more the illumination of our understanding comes from our recognition that Nature has preferred the discrete to the continuous and that electricity is not infinitely divisible but is, like matter, and even more simply than matter, of an atomic structure. And we have found the unit and learnt how to handle it.

It is even more strange that it may now be said of energy that there are signs of atomicity. It may seem absurd to think that the energy which is transformed in any operation is transformed in multiples of a universal unit or units, so that the operation cannot be arrested at any desired stage but only at definite intervals. Indeed we have no right to assert that this is always true. But undoubtedly there are cases in which the atomicity of energy is clear enough, as for example in the interchange of energy between electrons in motion and radiation. It is remarkable that when radiation sets an electron in motion, the electron acquires a perfectly definite speed depending only on the wave-length of the radiation and not on its intensity, and has apparently absorbed from the radiation a definite unit of energy. Radiation of a particular wave-length cannot spend its energy in this way except in multiples of a certain unit, because each of the electrons which it sets in motion has the same initial energy, which it must have got from the radiation. In other words, energy of radiation of the particular wave-length can only be transformed into energy of movement of electrons in multiples of a certain 'quantum' peculiar to that wave-length. The intensity of the radiation, that is to say, the amount of energy moving along the beam, can only affect the number of electrons set in motion and not the speed of any one of them. During the last few years a very extraordinary theory has been developed on the basis of these and similar facts. I doubt if it would be more profitable to give further instances at present, but I have mentioned it because it seems to show looming on the horizon of our knowledge another tendency of Nature to make use of the atomic principle.

I will only add that the whole position of physics is indeed at this time of extraordinary interest, and at any moment there may be some great discovery or illuminating thought which will explain the present startling difficulties and open up new worlds of thought.