5. A pen recorder makes a continuous line on a revolving drum, with a heated stylus connected to a galvanometer marking a permanent record on heat-sensitive paper. Any signal output from the oscilloscope is picked up by the galvanometer and causes the pen to make a sawtoothed mark; when the paper is unrolled from the drum, these marks are clearly visible as notches in a series of otherwise straight lines.
6. A synchronous timer marks the chart every ten seconds, and we are able to time individual pulses with a precision of one tenth of a second. Because the beginning and end of a train of pulses are not always distinct, we can only determine the center of a burst of flashes—which we use as our most important time indication—to within two seconds. However, this is accurate enough, for a change of only one degree in the orientation of the satellite’s spin axis would change the time of the flash burst center by about half a minute (see [below]).
7. We use a second oscilloscope to check on whether the signals we receive are genuine flashes or just accidental stray light. This oscilloscope has a long-persistence screen, which we use as a temporary memory. The pulses traced on its cathode ray tube are automatically photographed by a 35-mm camera while they persist on the screen. We can then examine the photograph to see if the pulses are genuine, which we ascertain from (a) their shape and size and (b) the intervals between successive pulses. Looking at the photographic record also confirms whether we are observing flashes from the 68° plane mirror or the 95° faceted mirrors. We can calculate the satellite’s spin rate by measuring the intervals between individual flashes.
General view of amplifying, monitoring, and recording gear that picks up glints of sunlight at the Crawford’s Hill observation station.
Enlarged portion of a typical pen record of flashes of sunlight from Telstar mirrors, showing a burst of 21 glints from the 68° mirror recorded at 03:40:58 Greenwich Mean Time on August 9, 1962. Synchronizing vibration mark seven lines above the recorded burst indicates the time 02:59:00. Measuring the horizontal distance between consecutive sawtooth marks tells us that the spin rate is between 163 and 164 revolutions per minute. (Precise measurements of the oscilloscope traces fixed the exact spin rate at the time of this burst at 163.64 revolutions per minute.)
Results
Telstar I was launched on July 10, 1962. That evening, beginning on the satellite’s seventh pass, we were able to detect trains of flashes from the mirrors. We assumed that, since Telstar had been launched almost exactly according to plan, its spin axis would be perpendicular to the plane of the earth’s orbit, and we calculated when we should see the flashes. And, each time, we actually saw them within two minutes of the times we had predicted—so we knew that the spin axis was almost exactly where it should be.
Our measurements have continued whenever the weather and other conditions permitted. Combining readings from the bursts of flashes and telemetry data from the solar aspect cells, we have accurately plotted Telstar’s spin axis; it has continued to precess very much as we predicted it would. We have also seen what happens to the spin axis when the satellite’s torque coil is turned on. And, by measuring the intervals between flashes, we have made very precise measurements of the spin rate, which is gradually decreasing mostly according to schedule. However, the plot is showing some small unexplained variations of spin decay rate, and a study of them will, we hope, throw light on some of the variations of the earth’s magnetic field.