The key to the operation of either type of solar cell is the junction between the regions of n-type and p-type material—what we call the p-n junction. In an actual n-on-p cell this junction is only about twenty millionths of an inch below the surface, since that is the thickness of the n-layer. At this point, where the hole-rich p-region meets the electron-rich n-region, there is a permanent, built-in electric field. As shown in the [figure below], the n-layer has many free electrons (indicated by minus signs) and a few holes (circled pluses), while the p-region has many holes and a few electrons. When the cell is in equilibrium, thermal agitation causes some holes to diffuse into the p-region. We call these stray holes and electrons minority carriers (the circled pluses and minuses in the figure). Thus, the n-layer has a slight positive charge and the p-body has a slight negative charge; this results in a difference in potential across the junction, which in silicon amounts to about seven-tenths of a volt.

Schematic diagram of an n-on-p solar cell. In the n-layer, minuses represent free electrons, circled pluses are minority-carrier holes; in the p-type body, pluses represent holes, circled minuses are minority-carrier electrons.

Sunlight is made up of individual corpuscles of energy called photons. When these photons are absorbed in or near a cell’s p-n junction, they liberate both a free-to-move negative charge and a free-to-move positive charge—this is called generating a hole-electron pair. The electric field across the p-n junction causes the holes to flow to the p-side and the electrons to the n-side of the barrier. This flow tends to make the p-side positive and the n-side negative, so that, when a load is connected between them, a useful external voltage (amounting to about six-tenths of a volt) is produced, and electric current will flow. Thus, we have converted light energy into electrical energy.

Only part of the energy in light can be used to generate an electrical output, since a good deal of the light striking a cell is absorbed as heat or is reflected from its surface. The percentage of solar energy that can be converted into usable electric power is called the cell’s conversion factor or efficiency. Although this can theoretically be as high as 22%, the best cells we have made in the laboratory have conversion factors of only about 15%, and the better commercial cells have efficiencies of 12% or more.

Although both p-on-n and n-on-p cells were made in early laboratory studies, the p-on-n cells gave a somewhat higher output. As a result, all the American commercial solar cells up to 1960 were of this type, and they were used on all satellites before Telstar I. (Russian satellites, we believe, have used n-on-p cells from the beginning.)

The U.S. Army Signal Corps Research and Development Laboratory, however, decided to make both p-on-n and n-on-p cells and compare their performance. This laboratory work led to a surprising discovery: The n-on-p cells were several times as resistant to energetic particle radiation as were comparable p-on-n cells. These results were announced in 1960, and confirmed by our measurements and those of other laboratories. The timing was very fortunate, since we had just learned of the greatly increased radiation hazards presented by the Van Allen belts.

Finding Out About Radiation Damage

Now, having given you a very brief account of how a solar cell works, let us return to our three-part problem. The first objective was to study all the aspects of radiation damage. To do this, we had to find out how much radiation the Telstar satellite would encounter; we needed to estimate the concentration of high-energy particles—both electrons and protons—at various altitudes and locations. Several government agencies are now carrying on research in this important area, but at the time of the Telstar I launch we did not know exactly how much radiation the satellite would run into. And the high-altitude nuclear explosion of July 9, 1962 (the day before Telstar I went into orbit) may have increased the quantity of high-energy electrons injected into its path.

We also wanted to find out whether electrons and protons would do the same damage to solar cells. Several kinds of cells were exposed at Bell Laboratories and at various university research laboratories to a wide range of radiation dosages. The experiments showed, generally, that the damage effects of electrons and protons should be about the same. Although protons are 1840 times as massive as electrons, there are a great many more electrons in the Van Allen belts, so that an unprotected solar cell would be much more likely to be injured by electrons than by protons.