The satellite uses 300 modules of twelve solar cells, in groups of six or three modules per facet.

Lengthwise diagram of a solar cell module, showing how individual cells were fixed in place.

Each of the cells has a top contact along one edge and a bottom contact all over its base, so we were able to assemble the 12-cell groups like shingles, with the bottom edge of one cell covering the top edge of the next, leaving only the active area of each cell exposed. But this meant that each module would be over four inches long and only 14 thousandths of an inch thick—far too weak to withstand stress and vibration. To support the cells, we decided to mount them on a metallized ceramic base. But this presented a problem: If the cells were soldered directly to the base, the different thermal expansion rates of the silicon and the ceramic would cause the structure to break during the cycles of extreme changes in temperature that Telstar would pass through. We remedied this by connecting each cell to the ceramic support by a thin U-shaped strip of silver ([see above]). Since silver has a much higher thermal expansion coefficient than silicon, we added tiny sandwiches of Nilvar or Invar (36% nickel, 64% iron) where the cells were attached. With this mounting method, the cell modules withstood thermal and mechanical shocks much more severe than those they would undergo in actual use. In one test, for instance, an entire cell module with its cover plates was first dipped in hot water, then plunged into liquid nitrogen at a temperature of -195° Centigrade. In orbit, the temperature range for the satellite was not expected to be more than from +80° to -100°C, with a rate of change of no more than three degrees a minute.

Finally, we needed to find the right kind of transparent protective cover for the Telstar solar cells, both to keep micrometeorites from damaging the sensitive and very thin diffused layer and to slow down the incoming electrons to nondestructive energy levels. For micrometeorite protection, only a thin layer of hard transparent substance was needed; for electron protection, the cover plates should have a mass of no less than 0.3 gram per square centimeter (as we explained above). And there were two other important considerations: The material we used should not be darkened or discolored by prolonged exposure to ultraviolet radiation, and it should have good thermal conductance, so that some of the heat absorbed by the solar cells could be conducted out to the cover plates and re-radiated. All these requirements led us to the choice of clear, man-made sapphire. Although sapphire is more expensive and difficult to make than the equivalent quartz or glass, it only has to be 30 mils (three hundreds of an inch) thick. Twice this thickness would be required if quartz or glass were used.

We have had space to describe only a few of the things involved in designing a solar cell power plant that would work unattended out in space. We have not mentioned a good many of the tough problems that had to be worked on. But we are glad to report that we could find answers to almost all our questions. And the most significant answer is shown in [the figure below], where you can see how the Telstar I solar power plant slowly diminished in power almost exactly as we predicted it would.

Very gradual decay due to radiation effects of the Telstar I solar cell plant in the first months after the satellite went into orbit; it was extremely close to the predicted rate (solid line).

Kenneth D. Smith was born in Galesburg, Illinois, and received a B.A. from Pomona College in 1928 and an M.A. from Dartmouth College in 1930. He joined Bell Telephone Laboratories in 1930, and has worked on the development of proximity fuzes, radar bombing systems, broadband microwave radio systems, and various semiconductor devices, including radiation-resistant solar cells for the Telstar satellite.