We now wanted to get Telstar to do something that had seemed to work in the laboratory. The transistors most affected by radiation were those operating under continuous reverse bias, to whose surfaces unwanted ions were attracted. If we removed the voltage from these transistors, we felt that the ionization layer would be dissipated, and they would act normally again. Our plan was to prepare a complete taped program of all fifteen commands, and carefully disconnect Telstar’s storage battery (using command SS). Then, when the satellite went into eclipse, there would be no power available from the solar cells either, and—if our calculation was right—the complete lack of voltage ought to restore the transistors to working order. This was a hazardous procedure, for if something went wrong we might have a completely silent satellite on our hands.

As it turned out, an accident did happen—but one of a different and much more fortunate kind. On December 27th Telstar misinterpreted our “trick” commands and disconnected its own battery before we asked it to. Then, as the satellite went into the earth’s shadow, we held our breath while all its power stopped and the telemetry went silent. But, as we had hoped, a rest period with all power removed from the deteriorated transistors apparently made them work almost normally once again. On January 1, 1963, we were able to disconnect the battery in regular fashion—that is, using the one-and-zero code. After this was done, and all power had been removed, both decoders again would operate when given normal commands (actually, the first one restored to duty was decoder No. 2, which had gone out of order first, back in August).

Back to Normal—For a Time

For more than a month Telstar I behaved as it should, and our communications experiments, including television broadcasts, were resumed on January 3rd. During this time we used both normal commands and our special notched-pulse modified commands. Whenever normal commands became intermittent we used the modified commands to disconnect the battery for several eclipses.

Our good fortune, however, did not last. Continued exposure to radiation apparently led to further damage to Telstar I’s transistors. By February 14th, disconnecting the storage battery no longer returned the decoder to normal, and we could operate only with our modified commands. And, on the 21st, the satellite apparently misinterpreted a command, disconnected its storage battery, and went silent. Since then, none of our modified commands has been able to bring back its voice. There is still a possibility that Telstar I may recover if it remains out of the high-radiation part of space for a long enough period—but as time goes by this appears less likely.

However, our work was not in vain. Because we pinpointed the effects of radiation on the transistors in Telstar I, this problem was counteracted on the Telstar II satellite launched on May 7, 1963 (see [page 31]). To avoid the worst of the radiation effects, the second Telstar is in a considerably larger orbit, which causes it to spend less time in the heaviest high-energy Van Allen belt regions. It carries new radiation detectors with much greater measuring capacity. And in one of Telstar II’s command decoders we are using a new type of transistor, which we hope will not be affected nearly as much by radiation as were the ones in Telstar I’s ill-fated decoders.

E. Jared Reid was born in Hartford, Connecticut, and received a B.S. from Trinity College in 1956, a B.E.E. from Rensselaer Polytechnic Institute in 1957, and an M.E.E. from New York University in 1959. He joined Bell Telephone Laboratories in 1957, and has worked on the design and testing of the Time Assignment Speech Interpolation (TASI) system for the transatlantic cable, as well as on transistor circuits for the Telstar satellite.

A Final Note to the Reader

Now, having read Part II of Satellite Communications Physics, you should have an idea how we predict the orbit of an artificial satellite and how we find out where it points while passing a thousand miles above our heads. You can see how we pick the best material to cover its surface with and how we protect its solar cells from the hazards of space. And you have watched the steps we would take when our satellite stops working properly.

It would, we admit, take a little more experience to solve problems like these on your own—and to deal with all the other complications of satellite communications. But we hope our brief glimpses into the laboratory have shown what this experience might be like. Our six case histories have only scratched the surface, but they should give you a good idea of the fascinating work that goes into practical science and engineering. They should show that something like Project Telstar doesn’t succeed only because of far-sighted, imaginative thinking—nor only because of ingenious engineering. It draws upon the best of both of these.