For a table containing the geological periods in their succession, I would refer to any modern text-book of Geology, or to an article in the Atlantic Monthly for March, 1862, upon "Methods of Study in Natural History," where they are given in connection with the order of introduction of animals upon earth.

Were these sets of rocks found always in the regular sequence in which I have enumerated them, their relative age would be easily determined, for their superposition would tell the whole story: the lowest would, of course, be the oldest, and we might follow without difficulty the ascending series, till we reached the youngest and uppermost deposits. But their succession has been broken up by frequent and violent alterations in the configuration of the globe. Land and water have changed their level,—islands have been transformed to continents,—sea-bottoms have become dry land, and dry land has sunk to form sea-bottoms,—Alps and Himalayas, Pyrenees and Apennines, Alleghanies and Rocky Mountains, have had their stormy birthdays since many of these beds have been piled one above another, and there are but few spots on the earth's surface where any number of them may be found in their original order and natural position. When we remember that Europe, which lies before us on the map as a continent, was once an archipelago of islands,—that, where the Pyrenees raise their rocky barrier between France and Spain, the waters of the Mediterranean and Atlantic met,—that, where the British Channel flows, dry land united England and France, and Nature in those days made one country of the lands parted since by enmities deeper than the waters that run between,—when we remember, in short, all the fearful convulsions that have torn asunder the surface of the earth, as if her rocky record had indeed been written on paper, we shall find a new evidence of the intellectual unity which holds together the whole physical history of the globe in the fact that through all the storms of time the investigator is able to trace one unbroken thread of thought from the beginning to the present hour.

The tree is known by its fruits,—and the fruits of chance are incoherence, incompleteness, unsteadiness, the stammering utterance of blind, unreasoning force. A coherence that binds all the geological ages in one chain, a stability of purpose that completes in the beings born to-day an intention expressed in the first creatures that swam in the Silurian ocean or crept upon its shores, a steadfastness of thought, practically recognized by man, if not acknowledged by him, whenever he traces the intelligent connection between the facts of Nature and combines them into what he is pleased to call his system of Geology, or Zoölogy, or Botany,—these things are not the fruits of chance or of an unreasoning force, but the legitimate results of intellectual power. There is a singular lack of logic, as it seems to me, in the views of the materialistic naturalists. While they consider classification, or, in other words, their expression of the relations between animals or between physical facts of any kind, as the work of their intelligence, they believe the relations themselves to be the work of physical causes. The more direct inference surely is, that, if it requires an intelligent mind to recognize them, it must have required an intelligent mind to establish them. These relations existed before man was created; they have existed ever since the beginning of time; hence, what we call the classification of facts is not the work of his mind in any direct original sense, but the recognition of an intelligent action prior to his own existence.

There is, perhaps, no part of the world, certainly none familiar to science, where the early geological periods can be studied with so much ease and precision as in the United States. Along their northern borders, between Canada and the United States, there runs the low line of hills known as the Laurentian Hills. Insignificant in height, nowhere rising more than fifteen hundred or two thousand feet above the level of the sea, these are nevertheless the first mountains that broke the uniform level of the earth's surface and lifted themselves above the waters. Their low stature, as compared with that of other more lofty mountain-ranges, is in accordance with an invariable rule, by which the relative age of mountains may be estimated. The oldest mountains are the lowest, while the younger and more recent ones tower above their elders, and are usually more torn and dislocated also. This is easily understood, when we remember that all mountains and mountain-chains are the result of upheavals, and that the violence of the outbreak must have been in proportion to the strength of the resistance. When the crust of the earth was so thin that the heated masses within easily broke through it, they were not thrown to so great a height, and formed comparatively low elevations, such as the Canadian hills or the mountains of Bretagne and Wales. But in later times, when young, vigorous giants, such as the Alps, the Himalayas, or, later still, the Rocky Mountains, forced their way out from their fiery prison-house, the crust of the earth was much thicker, and fearful indeed must have been the convulsions which attended their exit.

The Laurentian Hills form, then, a granite range, stretching from Eastern Canada to the Upper Mississippi, and immediately along its base are gathered the Azoic deposits, the first stratified beds, in which the absence of life need not surprise us, since they were formed beneath a heated ocean. As well might we expect to find the remains of fish or shells or crabs at the bottom of geysers or of boiling springs, as on those early shores bathed by an ocean of which the heat must have been so intense. Although, from the condition in which we find it, this first granite range has evidently never been disturbed by any violent convulsion since its first upheaval, yet there has been a gradual rising of that part of the continent; for the Azoic beds do not lie horizontally along the base of the Laurentian Hills in the position in which they must originally have been deposited, but are lifted and rest against their slopes. They have been more or less dislocated in this process, and are greatly metamorphized by the intense heat to which they must have been exposed. Indeed, all the oldest stratified rocks have been baked by the prolonged action of heat.

It may be asked how the materials for those first stratified deposits were provided. In later times, when an abundant and various soil covered the earth, when every river brought down to the ocean, not only its yearly tribute of mud or clay or lime, but the débris of animals and plants that lived and died in its waters or along its banks, when every lake and pond deposited at its bottom in successive layers the lighter or heavier materials floating in its waters and settling gradually beneath them, the process by which stratified materials are collected and gradually harden into rock is more easily understood. But when the solid surface of the earth was only just beginning to form, it would seem that the floating matter in the sea can hardly have been in sufficient quantity to form any extensive deposits. No doubt there was some abrasion even of that first crust; but the more abundant source of the earliest stratification is to be found in the submarine volcanoes that poured their liquid streams into the first ocean. At what rate these materials would be distributed and precipitated in regular strata it is impossible to determine; but that volcanic materials were so deposited in layers is evident from the relative position of the earliest rocks. I have already spoken of the innumerable chimneys perforating the Azoic beds, narrow outlets of Plutonic rock, protruding through the earliest strata. Not only are such funnels filled with the crystalline mass of granite that flowed through them in a liquid state, but it has often poured over their sides, mingling with the stratified beds around. In the present state of our knowledge, we can explain such appearances only by supposing that the heated materials within the earth's crust poured out frequently, meeting little resistance,—that they then scattered and were precipitated in the ocean around, settling in successive strata at its bottom,—that through such strata the heated masses within continued to pour again and again, forming for themselves the chimney-like outlets above mentioned.

Such, then, was the earliest American land,—a long, narrow island, almost continental in its proportions, since it stretched from the eastern borders of Canada nearly to the point where now the base of the Rocky Mountains meets the plain of the Mississippi Valley. We may still walk along its ridge and know that we tread upon the ancient granite that first divided the waters into a northern and southern ocean; and if our imaginations will carry us so far, we may look down toward its base and fancy how the sea washed against this earliest shore of a lifeless world. This is no romance, but the bald, simple truth; for the fact that this granite band was lifted out of the waters so early in the history of the world, and has not since been submerged, has, of course, prevented any subsequent deposits from forming above it. And this is true of all the northern part of the United States. It has been lifted gradually, the beds deposited in one period being subsequently raised, and forming a shore along which those of the succeeding one collected, so that we have their whole sequence before us. In regions where all the geological deposits (Silurian, Devonian, carboniferous, permian, triassic, etc.) are piled one upon another, and we can get a glimpse of their internal relations only where some rent has laid them open, or where their ragged edges, worn away by the abrading action of external influences, expose to view their successive layers, it must, of course, be more difficult to follow their connection. For this reason the American continent offers facilities to the geologist denied to him in the so-called Old World, where the earlier deposits are comparatively hidden, and the broken character of the land, intersected by mountains in every direction, renders his investigation still more difficult. Of course, when I speak of the geological deposits as so completely unveiled to us here, I do not forget the sheet of drift which covers the continent from north to south, and which we shall discuss hereafter, when I reach that part of my subject. But the drift is only a superficial and recent addition to the soil, resting loosely above the other geological deposits, and arising, as we shall see, from very different causes.