But before going on to speak in some detail of the organisms to which the phosphorescence of the sea is due, it will be as well to mention that the kind of phosphorescence just spoken of is only one mode in which the phenomenon is exhibited on the ocean. Though sometimes the light is shown in continuous lines whenever the surface is disturbed, at other times, and, according to M. de Quatrefages, more commonly, the light appears only in minute sparks, which, however numerous, never coalesce. "In the little channel known as the Sund de Chausez," he writes, "I have seen on a dark night each stroke of the oar kindle, as it were, myriads of stars, and the wake of the craft appeared in a manner besprinkled with diamonds." When such is the case the phosphorescence is due to various minute animals, especially crustaceans; that is, creatures which, microscopically small as they are, are yet constructed more or less on the type of the lobster or cray-fish.

At other times, again, the phosphorescence is still more partial. "Great domes of pale gold with long streamers," to use the eloquent words of Professor Martin Duncan, "move slowly along in endless succession; small silvery disks swim, now enlarging and now contracting, and here and there a green or bluish gleam marks the course of a tiny, but rapidly rising and sinking globe. Hour after hour the procession passes by, and the fishermen hauling in their nets from the midst drag out liquid light, and the soft sea jellies, crushed and torn piecemeal, shine in every clinging particle. The night grows dark, the wind rises and is cold, and the tide changes; so does the luminosity of the sea. The pale spectres below the surface sink deeper, and are lost to sight, but the increasing waves are tinged here and there with green and white, and often along a line, where the fresh water is mixing with the salt in an estuary, there is a brightness so intense that boats and shores are visible.... But if such sights are to be seen on the surface, what must not be the phosphorescence of the depths! Every sea-pen is glorious in its light, in fact, nearly every eight-armed Alcyonarian is thus resplendent, and the social Pyrosoma, bulky and a free swimmer, glows like a bar of hot metal with a white and green radiance."

Such accounts are enough to indicate how varied and how general a phenomenon is the phosphorescence of the sea. To take notice of one tithe of the points of interest summed up in the paragraph just quoted would occupy many pages, and we must therefore confine the attention to a few of the most interesting facts relating to marine phosphorescence.

We will return to that form of marine luminosity to which we first referred: what is known as the general or diffused phosphorescence of the sea. From this mode of describing it the reader must not infer that the surface of the ocean is ever to be seen all aglow in one sheet of continuous light. So far, at least, as was ever observed by M. de Quatrefages, who studied this phenomenon carefully and during long periods on the coasts of Brittany and elsewhere, no light was visible when the surface of the sea was perfectly still. On the other hand, when the sea exhibits in a high degree the phenomenon of diffused phosphorescence no disturbance can be too slight to cause the water to shine with that peculiar characteristic gleam. Drop but a grain of sand upon its surface, and you will see a point of light marking the spot where it falls, and from that point as a centre a number of increasing wavelets, each clearly defined by a line of light, will spread out in circles all around.

The cause of this diffused phosphorescence was long the subject of curiosity, and was long unknown, but more than a hundred years ago (in 1764) the light was stated by M. Kigaut to proceed from a minute and very lowly organism, now known as Noctiluca miliaris; and subsequent researches have confirmed this opinion. This Noctiluca is a spherical form of not more than one-fiftieth of an inch in size, with a slight depression or indentation at one point, marking the position of a mouth leading to a short digestive cavity, and having close beside it a filament, by means of which it probably moves about. The sphere is filled with protoplasm, in which there is a nucleus and one or more gaps, or "vacuoles." Such is nearly all the structure that can be discerned with the aid of the microscope in this simple organism.

Nevertheless, this lowly form is the chief cause of that diffused phosphorescence which is sometimes seen over a wide extent of the ocean. How innumerable the individuals belonging to this species must therefore be, may be left to the imagination. Probably the Noctiluca is not rivalled in this respect even by miscroscopic unicellular algæ which compose the "red snow."

By filtering sea-water containing Noctilucæ its light can be concentrated, and it has been found that a few teaspoonfuls will then yield light enough to enable one to read holding a book at the ordinary distance from the eyes—about ten inches.

A singular and highly remarkable case of diffused marine phosphorescence was observed by Nordenskiöld during his voyage to Greenland in 1883. One dark night, when the weather was calm and the sea smooth, his vessel was steaming across a narrow inlet called the Igaliko Fjord, when the sea was suddenly observed to be illumined in the rear of the vessel by a broad but sharply-defined band of light, which had a uniform, somewhat golden sheen, quite unlike the ordinary bluish-green phosphorescence of the sea. The latter kind of light was distinctly visible at the same time in the wake of the vessel. Though the steamer was going at the rate of from five to six miles an hour, the remarkable sheet of light got nearer and nearer. When quite close, it appeared as if the vessel were sailing in a sea of fire or molten metal. In the course of an hour the light passed on ahead, and ultimately it disappeared in the remote horizon. The nature of this phenomenon Nordenskiöld is unable to explain; and unfortunately he had not the opportunity of examining it with the spectroscope.

If we come now to consider the more partial phosphorescence of the sea, we find that it is due to animals belonging to almost every group of marine forms—to Echinoderms, or creatures of the sea-urchin and star-fish type, to Annelid worm, to Medusidæ, or jelly-fish, as they are popularly called, including the "great domes" and the "silvery disks" of the passage above quoted from Professor Martin Duncan, to Tunicates, among which is the Pyrosoma, to Mollusks, Crustaceans, and in very many cases to Actinozoa, or forms belonging to the type of the sea anemone and the coral polyp.

Of these we will single out only a few for more special notice.