All recent corals, as has already been said, conform so closely to the anatomy of normal Actinians that they cannot be classified apart from them, except that they are distinguished by the possession of a calcareous skeleton. This skeleton is largely composed of a number of radiating plates or septa, and it differs both in origin and structure from the calcareous skeleton of all Alcyonaria except Heliopora. It is formed, not from fused spicules, but as a secretion of a special layer of cells derived from the basal ectoderm, and known as calicoblasts. The skeleton or corallum of a typical solitary coral—the common Devonshire cup-coral Caryophyllia smithii (fig. 15) is a good example—exhibits the followings parts:—(1) The basal plate, between the zooid and the surface of attachment. (2) The septa, radial plates of calcite reaching from the periphery nearly or quite to the centre of the coral-cup or calicle. (3) The theca or wall, which in many corals is not an independent structure, but is formed by the conjoined thickened peripheral ends of the septa. (4) The columella, a structure which occupies the centre of the calicle, and may arise from the basal plate, when it is called essential, or may be formed by union of trabecular offsets of the septa, when it is called unessential. (5) The costae, longitudinal ribs or rows of spines on the outer surface of the theca. True costae always correspond to the septa, and are in fact the peripheral edges of the latter. (6) Epitheca, an offset of the basal plate which surrounds the base of the theca in a ring-like manner, and in some corals may take the place of a true theca. (7) Pali, spinous or blade-like upgrowths from the bottom of the calicle, which project between the inner edges of certain septa and the columella. In addition to these parts the following structures may exist in corals:— Dissepiments are oblique calcareous partitions, stretching from septum to septum, and closing the interseptal chambers below. The whole system of dissepiments in any given calicle is often called endotheca. Synapticulae are calcareous bars uniting adjacent septa. Tabulae are stout horizontal partitions traversing the centre of the calicle and dividing it into as many superimposed chambers. The septa in recent corals always bear a definite relation to the mesenteries, being found either in every entocoele or in every entocoele and exocoele. Hence in corals in which there is only a single cycle of mesenteries the septa are correspondingly few in number; where several cycles of mesenteries are present the septa are correspondingly numerous. In some cases—e.g. in some species of Madrepora—only two septa are fully developed, the remainder being very feebly represented.
| Fig. 16.—Tangential section of a larva of Astroides calicularis which has fixed itself on a piece of cork. ec, Ectoderm; en, endoderm; mg, mesogloea; m, m, mesenteries; s, septum; b, basal plate formed of ellipsoids of carbonate of lime secreted by the basal ectoderm; ep, epitheca. (After von Koch.) |
Though the corallum appears to live within the zooid, it is morphologically external to it, as is best shown by its developmental history. The larvae of corals are free swimming ciliated forms known as planulae, and they do not acquire a corallum until they fix themselves. A ring-shaped plate of calcite, secreted by the ectoderm, is then formed, lying between the embryo and the surface of attachment. As the mesenteries are formed, the endoderm of the basal disk lying above the basal plate is raised up in the form of radiating folds. There may be six of these folds, one in each entocoele of the primary cycle of mesenteries, or there may be twelve, one in each exocoele and entocoele. The ectoderm beneath each fold becomes detached from the surface of the basal plate, and both it and the mesogloea are folded conformably with the endoderm. The cells forming the limbs of the ectodermic folds secrete nodules of calcite, and these, fusing together, give rise to six (or twelve) vertical radial plates or septa. As growth proceeds new septa are formed simultaneously with the new couples of secondary mesenteries. In some corals, in which all the septa are entocoelic, each new system is embraced by a mesenteric couple; in others, in which the septa are both entocoelic and exocoelic, three septa are formed in every chamber between two primary mesenterial couples, one in the entocoele of the newly formed mesenterial couple of the secondary cycle, and one in each exocoele between a primary and a secondary couple. These latter are in turn embraced by the couples of the tertiary cycle of mesenteries, and new septa are formed in the exocoeles on either side of them, and so forth.
| Fig. 17.—Transverse section through a zooid of Cladocora. The corallum shaded with dots, the mesogloea represented by a thick line. Thirty-two septa are present, six in the entocoeles of the primary cycle of mesenteries, I; six in the entocoeles of the secondary cycle of mesenteries, II; four in the entocoeles of the tertiary cycle of mesenteries, III, only four pairs of the latter being developed; and sixteen in the entocoeles between the mesenterial pairs. D, D, Directive mesenteries; st, stomodaeum. (After Duerden.) |
It is evident from an inspection of figs. 16 and 17 that every septum is covered by a fold of endoderm, mesogloea, and ectoderm, and is in fact pushed into the cavity of the zooid from without. The zooid then is, as it were, moulded upon the corallum. When fully extended, the upper part of the zooid projects for some distance out of the calicle, and its wall is reflected for some distance over the lip of the latter, forming a fold of soft tissue extending to a greater or less distance over the theca, and containing in most cases a cavity continuous over the lip of the calicle with the coelenteron. This fold of tissue is known as the edge-zone In some corals the septa are solid imperforate plates of calcite, and their peripheral ends are either firmly welded together, or are united by interstitial pieces so as to form imperforate theca. In others the peripheral ends of the septa are united only by bars or trabeculae, so that the theca is perforate, and in many such perforate corals the septa themselves are pierced by numerous perforations. In the former, which have been called aporose corals, the only communication between the cavity of the edge-zone and the general cavity of the zooid is by way of the lip of the calicle; in the latter, or perforate corals, the theca is permeated by numerous branching and anastomosing canals lined by endoderm, which place the cavity of the edge-zone in communication with the general cavity of the zooid.
| Fig. 18. |
| A, Schematic longitudinal section through a zooid and bud of Stylophora digitata. In A, B, and C the thick black lines represent the soft tissues; the corallum is dotted. s, Stomodaeum; c, c, coenosarc; col, columella, T tabulae. B, Similar section through a single zooid and bud of Astroides calicularis. C, Similar section through three corallites of Lophohelia prolifera. ez, Edge-zone. D, Diagram illustrating the process of budding by unequal division. E, Section through a dividing calicle of Mussa, showing the union of two septa in the plane of division and the origin of new septa at right angles to them. (C original; the rest after von Koch.) |
A large number of corals, both aporose and perforate, are colonial. The colonies are produced by either budding or division. In the former case the young daughter zooid, with its corallum, arises wholly outside the cavity of the parent zooid, and the component parts of the young corallum, septa, theca, columella, &c., are formed anew in every individual produced. In division a vertical constriction divides a zooid into two equal or unequal parts, and the several parts of the two corals thus produced are severally derived from the corresponding parts of the dividing corallum. In colonial corals a bud is always formed from the edge-zone, and this bud develops into a new zooid with its corallum. The cavity of the bud in an aporose coral (fig. 18, A, C) does not communicate directly with that of the parent form, but through the medium of the edge-zone. As growth proceeds, and parent and bud become separated farther from one another, the edge-zone forms a sheet of soft tissue, bridging over the space between the two, and resting upon projecting spines of the corallum. This sheet of tissue is called the coenosarc. Its lower surface is clothed with a layer of calicoblasts which continue to secrete carbonate of lime, giving rise to a secondary deposit which more or less fills up the spaces between the individual coralla, and is distinguished as coenenchyme. This coenenchyme may be scanty, or may be so abundant that the individual corallites produced by budding seem to be immersed in it. Budding takes place in an analogous manner in perforate corals (fig. 18, B), but the presence of the canal system in the perforate theca leads to a modification of the process. Buds arise from the edge-zone which already communicate with the cavity of the zooid by the canals. As the buds develop the canal system becomes much extended, and calcareous tissue is deposited between the network of canals, the confluent edge-zones of mother zooid and bud forming a coenosarc. As the process continues a number of calicles are formed, imbedded in a spongy tissue in which the canals ramify, and it is impossible to say where the theca of one corallite ends and that of another begins. In the formation of colonies by division a constriction at right angles to the long axis of the mouth involves first the mouth, then the peristome, and finally the calyx itself, so that the previously single corallite becomes divided into two (fig. 18, E). After division the corallites continue to grow upwards, and their zooids may remain united by a bridge of soft tissue or coenosarc. But in some cases, as they grow farther apart, this continuity is broken, each corallite has its own edge-zone, and internal continuity is also broken by the formation of dissepiments within each calicle, all organic connexion between the two zooids being eventually lost. Massive meandrine corals are produced by continual repetition of a process of incomplete division, involving the mouth and to some extent the peristome: the calyx, however, does not divide, but elongates to form a characteristic meandrine channel containing several zooid mouths.
Corals have been divided into Aporosa and Perforata, according as the theca and septa are compact and solid, or are perforated by pores containing canals lined by endoderm. The division is in many respects convenient for descriptive purposes, but recent researches show that it does not accurately represent the relationships of the different families. Various attempts have been made to classify corals according to the arrangement of the septa, the characters of the theca, the microscopic structure of the corallum, and the anatomy of the soft parts. The last-named method has proved little more than that there is a remarkable similarity between the zooids of all recent corals, the differences which have been brought to light being for the most part secondary and valueless for classificatory purposes. On the other hand, the study of the anatomy and development of the zooids has thrown much light upon the manner in which the corallum is formed, and it is now possible to infer the structure of the soft parts from a microscopical examination of the septa, theca, &c., with the result that unexpected relationships have been shown to exist between corals previously supposed to stand far apart. This has been particularly the case with the group of Palaeozoic corals formerly classed together as Rugosa. In many of these so-called rugose forms the septa have a characteristic arrangement, differing from that of recent corals chiefly in the fact that they show a tetrameral instead of a hexameral symmetry. Thus in the family Stauridae there are four chief septa whose inner ends unite in the middle of the calicle to form a false columella, and in the Zaphrentidae there are many instances of an arrangement, such as that depicted in fig. 19, which represents the septal arrangement of Streptelasma corniculum from the lower Silurian. In this coral the calicle is divided into quadrants by four principal septa, the main septum, counter septum, and two alar septa. The remaining septa are so disposed that in the quadrants abutting on the chief septum they converge towards that septum, whilst in the other quadrants they converge towards the alar septa. The secondary septa show a regular gradation in size, and, assuming that the smallest were the most recently formed, it will be noticed that in the chief quadrants the youngest septa lie nearest to the main septum; in the other quadrants the youngest septa lie nearest to the alar septa. This arrangement, however, is by no means characteristic even of the Zaphrentidae, and in the family Cyathophyllidae most of the genera exhibit a radial symmetry in which no trace of the bilateral arrangement described above is recognizable, and indeed in the genus Cyathophyllum itself a radial arrangement is the rule. The connexion between the Cyathophyllidae and modern Astraeidae is shown by Moseleya latistellata, a living reef-building coral from Torres Strait. The general structure of this coral leaves no doubt that it is closely allied to the Astraeidae, but in the young calicles a tetrameral symmetry is indicated by the presence of four large septa placed at right angles to one another. Again, in the family Amphiastraeidae there is commonly a single septum much larger than the rest, and it has been shown that in the young calicles, e.g. of Thecidiosmilia, two septa, corresponding to the main- and counter-septa of Streptelasma, are first formed, then two alar septa, and afterwards the remaining septa, the latter taking on a generally radial arrangement, though the original bilaterality is marked by the preponderance of the main septum. As the microscopic character of the corallum of these extinct forms agrees with that of recent corals, it may be assumed that the anatomy of the soft parts also was similar, and the tetrameral arrangement, when present, may obviously be referred to a stage when only the first two pairs of Edwardsian mesenteries were present and septa were formed in the intervals between them.
| Fig. 19.—Diagram of the arrangement of the septa in a Zaphrentid coral. m, Main septum; c, counter septum; t, t, alar septa. |
Space forbids a discussion of the proposals to classify corals after the minute structure of their coralla, but it will suffice to say that it has been shown that the septa of all corals are built up of a number of curved bars called trabeculae, each of which is composed of a number of nodes. In many secondary corals (Cyclolites, Thamnastraea) the trabeculae are so far separate that the individual bars are easily recognizable, and each looks something like a bamboo owing to the thickening of the two ends of each node. The trabeculae are united together by these thickened internodes, and the result is a fenestrated septum, which in older septa may become solid and aporose by continual deposit of calcite in the fenestrae. Each node of a trabecula may be simple, i.e. have only one centre of calcification, or may be compound. The septa of modern perforate corals are shown to have a structure nearly identical with that of the secondary forms, but the trabeculae and their nodes are only apparent on microscopical examination. The aporose corals, too, have a practically identical structure, their compactness being due to the union of the trabeculae throughout their entire lengths instead of at intervals, as in the Perforata. Further, the trabeculae may be evenly spaced throughout the septum, or may be grouped together, and this feature is probably of value in estimating the affinities of corals. (For an account of coral formations see [Coral-Reefs].)