(α) and (β) resemble the phenols, whilst
(γ) (anthranol) is a reduction product of anthraquinone. β-anthrol and anthranol give the corresponding amino compounds (anthramines) when heated with ammonia.
Numerous sulphonic acids of anthracene are known, a monosulphonic acid being obtained with dilute sulphuric acid, whilst concentrated sulphuric acid produces mixtures of the anthracene disulphonic acids. By the action of sodium amalgam on an alcoholic solution of anthracene, an anthracene dihydride, C14H12, is obtained, whilst by the use of stronger reducing agents, such as hydriodic acid and amorphous phosphorus, hydrides of composition C14H16 and C14H24 are produced.
Methyl and phenyl anthracenes are known; phenyl anthranol (phthalidin) being somewhat closely related to the phenolphthaleins (q.v.). Oxidizing agents convert anthracene into anthraquinone (q.v.); the production of this substance by oxidizing anthracene in glacial acetic acid solution, with chromic acid, is the usual method employed for the estimation of anthracene.
ANTHRACITE (Gr. ἄνθραξ, coal), a term applied to those varieties of coal which do not give off tarry or other hydrocarbon vapours when heated below their point of ignition; or, in other words, which burn with a smokeless and nearly non-luminous flame. Other terms having the same meaning are, “stone coal” (not to be confounded with the German Steinkohle) or “blind coal” in Scotland, and “Kilkenny coal” in Ireland. The imperfect anthracite of north Devon, which however is only used as a pigment, is known as culm, the same term being used in geological classification to distinguish the strata in which it is found, and similar strata in the Rhenish hill countries which are known as the Culm Measures. In America, culm is used as an equivalent for waste or slack in anthracite mining.
Physically, anthracite differs from ordinary bituminous coal by its greater hardness, higher density, 1.3-1.4, and lustre, the latter being often semi-metallic with a somewhat brownish reflection. It is also free from included soft or fibrous notches and does not soil the fingers when rubbed. Structurally it shows some alteration by the development of secondary divisional planes and fissures so that the original stratification lines are not always easily seen. The thermal conductivity is also higher, a lump of anthracite feeling perceptibly colder when held in the warm hand than a similar lump of bituminous coal at the same temperature. The chemical composition of some typical anthracites is given in the article [Coal].
Anthracite may be considered to be a transition stage between ordinary bituminous coal and graphite, produced by the more or less complete elimination of the volatile constituents of the former; and it is found most abundantly in areas that have been subjected to considerable earth-movements, such as the flanks of great mountain ranges. The largest and most important anthracite region, that of the north-eastern portion of the Pennsylvania coal-field, is a good example of this; the highly contorted strata of the Appalachian region produce anthracite exclusively, while in the western portion of the same basin on the Ohio and its tributaries, where the strata are undisturbed, free-burning and coking coals, rich in volatile matter, prevail. In the same way the anthracite region of South Wales is confined to the contorted portion west of Swansea and Llanelly, the central and eastern portions producing steam, coking and house coals.