Differences between Limulus and Scorpio.—We have now passed in review the principal structural features in which Limulus agrees with Scorpio and differs from other Arthropoda. There remains for consideration the one important structural difference between the two animals. Limulus agrees with the majority of the Crustacea in being destitute of renal excretory caeca or tubes opening into the hinder part of the gut. Scorpio, on the other hand, in common with all air-breathing Arthropoda except Peripatus, possesses these tubules, which are often called Malpighian tubes. A great deal has been made of this difference by some writers. It has been considered by them as proving that Limulus, in spite of all its special agreements with Scorpio (which, however, have scarcely been appreciated by the writers in question), really belongs to the Crustacean line of descent, whilst Scorpio, by possessing Malpighian tubes, is declared to be unmistakably tied together with the other Arachnida to the tracheate Arthropods, the Hexapods, Diplopods, and Chilopods, which all possess Malpighian tubes.


Fig. 29.—Diagram of thearterial system of A, Scorpio,and B, Limulus. The Romannumerals indicate the bodysomites and the two figuresare adjusted for comparison.ce, Cerebral arteries; sp,supra-spinal or medullaryartery; c, caudal artery;l, lateral anastomotic arteryof Limulus. The figure Balso shows the peculiar neuralinvestiture formed by thecerebral arteries in Limulusand the derivation from thisof the arteries to the limbs,III, IV, VI, whereas inScorpio the latter have aseparate origin from theanterior aorta.
From Lankester, “Limulus anArachnid.”

It must be pointed out that the presence or absence of such renal excretory tubes opening into the intestine appears to be a question of adaptation to the changed physiological conditions of respiration, and not of morphological significance, since a pair of renal excretory tubes of this nature is found in certain Amphipod Crustacea (Talorchestia, &c.) which have abandoned a purely aquatic life. This view has been accepted and supported by Professors Korschelt and Heider (16). An important fact in its favour was discovered by Laurie (17), who investigated the embryology of two species of Scorpio under Lankester’s direction. It appears that the Malpighian tubes of Scorpio are developed from the mesenteron, viz. that portion of the gut which is formed by the hypoblast, whereas in Hexapod insects the similar caecal tubes are developed from the proctodaeum or in-pushed portion of the gut which is formed from epiblast. In fact it is not possible to maintain that the renal excretory tubes of the gut are of one common origin in the Arthropoda. They have appeared independently in connexion with a change in the excretion of nitrogenous waste in Arachnids, Crustacea, and the other classes of Arthropoda when aerial, as opposed to aquatic, respiration has been established—and they have been formed in some cases from the mesenteron, in other cases from the proctodaeum. Their appearance in the air-breathing Arachnids does not separate those forms from the water-breathing Arachnids which are devoid of them, any more than does their appearance in certain Amphipoda separate those Crustaceans from the other members of the class.

Further, it is pointed out by Korschelt and Heider that the hinder portion of the gut frequently acts in Arthropoda as an organ of nitrogenous excretion in the absence of any special excretory tubules, and that the production of such caeca from its surface in separate lines of descent does not involve any elaborate or unlikely process of growth. In other words, the Malpighian tubes of the terrestrial Arachnida are homoplastic with those of Hexapoda and Myriapoda, and not homogenetic with them. We are compelled to take a similar view of the agreement between the tracheal air-tubes of Arachnida and other tracheate Arthropods. They are homoplasts (see 18) one of another, and do not owe their existence in the various classes compared to a common inheritance of an ancestral tracheal system.

Fig. 30.—View from below of a scorpion (Buthus occitanus) opened and dissected so as to show the pericardium with its muscles, the lateral arteries, and the tergo-sternal muscles.
PRO, Prosoma. dpm, Dorso-plastral muscle. art, Lateral artery. tsm1, Tergo-sternal muscle (labelled dv in fig. 31) of the second (pectiniferous) mesosomatic somite; this is the most anterior pair of the series of six, none are present in the genital somite. tsm4, Tergo-sternal muscle of the fifth mesosomatic somite. tsm6, Tergo-sternal muscle of the enlarged first metasomatic somite. Per, Pericardium. VPM1 to VPM7, The series of seven pairs of veno-pericardiac muscles (labelled pv in fig. 31).
There is some reason to admit the existence of another more anterior pair of these muscles in Scorpio; this would make the number exactly correspond with the number in Limulus.
(After Lankester, Trans. Zool. Soc. vol. xi, 1883.)

Conclusions arising from the Close Affinity of Limulus and Scorpio.—When we consider the relationships of the various classes of Arthropoda, having accepted and established the fact of the close genetic affinity of Limulus and Scorpio, we are led to important conclusions. In such a consideration we have to make use not only of the fact just mentioned, but of three important generalizations which serve as it were as implements for the proper estimation of the relationships of any series of organic forms. First of all there is the generalization that the relationships of the various forms of animals (or of plants) to one another is that of the ultimate twigs of a much-branching genealogical tree. Secondly, identity of structure in two organisms does not necessarily indicate that the identical structure has been inherited from an ancestor common to the two organisms compared (homogeny), but may be due to independent development of a like structure in two different lines of descent (homoplasy). Thirdly, those members of a group which, whilst exhibiting undoubted structural characters indicative of their proper assignment to that group, yet are simpler than and inferior in elaboration of their organization to other members of the group, are not necessarily representatives of the earlier and primitive phases in the development of the group—but are very often examples of retrogressive change or degeneration. The second and third implements of analysis above cited are of the nature of cautions or checks. Agreements are not necessarily due to common inheritance; simplicity is not necessarily primitive and ancestral.

On the other hand, we must not rashly set down agreements as due to “homoplasy” or “convergence of development” if we find two or three or more concurrent agreements. The probability is against agreement being due to homoplasy when the agreement involves a number of really separate (not correlated) coincidences. Whilst the chances are in favour of some one homoplastic coincidence or structural agreement occurring between some member or other of a large group a and some member or other of a large group b, the matter is very different when by such an initial coincidence the two members have been particularized. The chances against these two selected members exhibiting another really independent homoplastic agreement are enormous: let us say 10,000 to 1. The chances against yet another coincidence are a hundred million to one, and against yet one more “coincidence” they are the square of a hundred million to one. Homoplasy can only be assumed when the coincidence is of a simple nature, and is such as may be reasonably supposed to have arisen by the action of like selective conditions upon like material in two separate lines of descent.[4]

So, too, degeneration is not to be lightly assumed as the explanation of a simplicity of structure. There is a very definite criterion of the simplicity due to degeneration, which can in most cases be applied. Degenerative simplicity is never uniformly distributed over all the structures of the organism. It affects many or nearly all the structures of the body, but leaves some, it may be only one, at a high level of elaboration and complexity. Ancestral simplicity is more uniform, and does not co-exist with specialization and elaboration of a single organ. Further: degeneration cannot be inferred safely by the examination of an isolated case; usually we obtain a series of forms indicating the steps of a change in structure—and what we have to decide is whether the movement has been from the simple to the more complex, or from the more complex to the simple. The feathers of a peacock afford a convenient example of primitive and degenerative simplicity. The highest point of elaboration in colour, pattern and form is shown by the great eye-painted tail feathers. From these we can pass by gradual transitions in two directions, viz. either to the simple lateral tail feathers with a few rami only, developed only on one side of the shaft and of uniform metallic coloration—or to the simple contour feathers of small size, with the usual symmetrical series of numerous rami right and left of the shaft and no remarkable colouring. The one-sided specialization and the peculiar metallic colouring of the lateral tail feathers mark them as the extreme terms of a degenerative series, whilst the symmetry, likeness of constituent parts inter se, and absence of specialized pigment, as well as the fact that they differ little from any average feather of birds in general, mark the contour feather as primitively simple, and as the starting-point from which the highly elaborated eye-painted tail feather has gradually evolved.

Applying these principles to the consideration of the Arachnida, we arrive at the conclusion that the smaller and simpler Arachnids are not the more primitive, but that the Acari or mites are, in fact, a degenerate group. This was maintained by Lankester in 1878 (19), again in 1881 (20); it was subsequently announced as a novelty by Claus in 1885 (21). Though the aquatic members of a class of animals are in some instances derived from terrestrial forms, the usual transition is from an aquatic ancestry to more recent land-living forms. There is no doubt, from a consideration of the facts of structure, that the aquatic water-breathing Arachnids, represented in the past by the Eurypterines and to-day by the sole survivor Limulus, have preceded the terrestrial air-breathing forms of that group. Hence we see at once that the better-known Arachnida form a series, leading from Limulus-like aquatic creatures through scorpions, spiders and harvest-men, to the degenerate Acari or mites. The spiders are specialized and reduced in apparent complexity, as compared with the scorpions, but they cannot be regarded as degenerate since the concentration of structure which occurs in them results in greater efficiency and power than are exhibited by the scorpion. The determination of the relative degree of perfection of organization attained by two animals compared is difficult when we introduce, as seems inevitable, the question of efficiency and power, and do not confine the question to the perfection of morphological development. We have no measure of the degree of power manifested by various animals—though it would be possible to arrive at some conclusions as to how that “power” should be estimated. It is not possible here to discuss that matter further. We must be content to point out that it seems that the spiders, the pedipalps, and other large Arachnids have not been derived from the scorpions directly, but have independently developed from aquatic ancestors, and from one of these independent groups—probably through the harvest-men from the spiders—the Acari have finally resulted.

After Beck, Trans. Zool. Soc. Vol. xi., 1883.
Fig. 31.—Diagram of a lateral view of a longitudinal section ofa scorpion.

d, Chelicera.

ch, Chela.

cam, Camerostome.

m, Mouth.

ent, Entosternum.

p, Pecten.

stig1, First pulmonary aperture.

stig4, Fourth pulmonary aperture.

dam, Muscle from carapace to a praeoral entosclerite.

ad, Muscle from carapace to entosternum.

md, Muscle from tergite of genital somite to entosternum (same as dpm in fig. 30).

dv1 to dv6, Dorso-ventral muscles (same as the series labelled tsm in fig. 30).

pv1 to pv7, The seven veno-pericardiac muscles of the right side (labelled VPM in fig. 30).