It is difficult in the absence of more detailed knowledge as to the eyes of Chilopoda and Diplopoda to give full value to these facts in tracing the affinities of the various classes of Arthropods. But they seem to point to a community of origin of Hexapods and Crustacea in regard to the complicated ommatidia of the compound eye, and to a certain isolation of the Arachnida, which are, however, traceable, so far as the eyes are concerned, to a distant common origin with Crustacea and Hexapoda through the very simple compound eyes (monostichous, polymeniscous) of Limulus.

Fig. 12.—Diagram to show the derivation of the unit or “ommatidium” of the compound eye of Crustacea and Hexapoda, C, from a simple monomeniscous monostichous eye resembling the lateral eye of a scorpion, A, or the unit of the compound lateral eye of Limulus (see article [Arachnida], figs. 22 and 23). B represents an intermediate hypothetical form in which the cells beneath the lens are beginning to be superimposed as corneagen, vitrella and retinula, instead of standing side by side in horizontal series. The black represents the cuticular product of the epidermal cells of the ocular area, taking the form either of lens, cl, of crystalline body, cry, or of rhabdom, rhab; hy, hypodermis or epidermal cells; corn1, laterally-placed cells in the simpler stage, A, which like the nerve-end cells, vit1 and ret1, are corneagens or lens-producing; corn, specialized corneagen or lens-producing cells; vit1, potential vitrella cells with cry1, potential crystalline body now indistinguishable from retinula cells and rhabdomeres; vit, vitrella cell with cry, its contained cuticular product, the crystalline cone or body; ret1, rhab1, retinula cells and rhabdom of scorpion undifferentiated from adjacent cells, vit1; ret, retinula cell; rhab, rhabdom; nf, optic nerve-fibres. (Modified from Watase.)

The Tracheae.—In regard to tracheae the very natural tendency of zoologists has been until lately to consider them as having once developed and once only, and therefore to hold that a group “Tracheata” should be recognized, including all tracheate Arthropods. We are driven by the conclusions arrived at as to the derivation of the Arachnida from branchiate ancestors, independently of the other tracheate Arthropods, to formulate the conclusion that tracheae have been independently developed in the Arachnidan class. We are also, by the isolation of Peripatus and the impossibility of tracing to it all other tracheate Arthropoda, or of regarding it as a degenerate offset from some one of the tracheate classes, forced to the conclusion that the tracheae of the Onychophora have been independently acquired. Having accepted these two conclusions, we formulate the generalization that tracheae can be independently acquired by various branches of Arthropod descent in adaptation to a terrestrial as opposed to an aquatic mode of life. A great point of interest therefore exists in the knowledge of the structure and embryology of tracheae in the different groups. It must be confessed that we have not such full knowledge on this head as could be wished for. Tracheae are essentially tubes like blood-vessels—apparently formed from the same tissue elements as blood-vessels—which contain air in place of blood, and usually communicate by definite orifices, the tracheal stigmata, with the atmosphere. They are lined internally by a cuticular deposit of chitin. In Peripatus and the Diplopods they consist of bunches of fine tubes which do not branch but diverge from one another; the chitinous lining is smooth. In the Hexapods and Chilopods, and the Arachnids (usually), they form tree-like branching structures, and their finest branches are finer than any blood-capillary, actually in some cases penetrating a single cell and supplying it with gaseous oxygen. In these forms the chitinous lining of the tubes is thickened by a close-set spiral ridge similar to the spiral thickening of the cellulose wall of the spiral vessels of plants. It is a noteworthy fact that other tubes in these same terrestrial Arthropoda—namely, the ducts of glands—are similarly strengthened by a chitinous cuticle, and that a spiral or annular thickening of the cuticle is developed in them also. Chitin is not exclusively an ectodermal product, but occurs also in cartilaginous skeletal plates of mesoblastic origin (connective tissue). The immediate cavities or pits into which the tracheal stigmata open appear to be in many cases ectodermic in sinkings, but there seems to be no reason (based on embryological observation) for regarding the tracheae as an ingrowth of the ectoderm. They appear, in fact, to be an air-holding modification of the vasifactive connective tissue. Tracheae are abundant just in proportion as blood-vessels become suppressed. They are reciprocally exclusive. It seems not improbable that they are two modifications of the same tissue-elements. In Peripatus the stigmatic pits at which the tracheae communicate with the atmosphere are scattered and not definite in their position. In other cases the stigmata are definitely paired and placed in a few segments or in several. It seems that we have to suppose that the vasifactive tissue of Arthropoda can readily take the form of air-holding instead of blood-holding tubes, and that this somewhat startling change in its character has taken place independently in several instances—viz. in the Onychophora, in more than one group of Arachnida, in Diplopoda, and again in the Hexapoda and Chilopoda.

The Malpighian Tubes.—This name is applied to the numerous fine caecal tubes of noticeable length developed from the proctodaeal invert of ectodermal origin in Hexapods. These tubes are shown to excrete nitrogenous waste products similar to uric acid. Tubes of renal excretory function in a like position occur in most terrestrial Arthropoda—viz. in Chilopoda, Diplopoda and Arachnida. They are also found in some of the semi-terrestrial and purely aquatic Amphipod Crustaceans. But the conclusion that all such tubes are identical in essential character seems to be without foundation. The Malpighian tubes of Hexapods are outgrowths of the proctodaeum, but those of Scorpion and the Amphipod Crustacea are part of the metenteron or endodermal gut, though originating near its junction with the proctodaeum. Hence the presence or absence of such tubes cannot be used as an argument as to affinity without some discrimination. The Scorpion’s so-called Malpighian tubes are not the same organs as those so named in the other Tracheata. Such renal caecal tubes seem to be readily evolved from either metenteron or proctodaeum when the conditions of the out-wash of nitrogenous waste-products are changed by the transference from aquatic to terrestrial life. The absence of such renal caeca in Limulus and their presence in the terrestrial Arachnida is precisely on a parallel with their absence in aquatic Crustacea and their presence in the feebly branchiate Amphipoda.

Group Characters.—We shall now pass the groups of the Arthropoda in review, attempting to characterize them in such a way as will indicate their probable affinities and genetic history.

Sub-Phylum ARTHROPODA.—The characters of the sub-phylum and those of the associated sub-phyla Chaetopoda and Rotifera have been given above, as well as the general characters of the phylum Appendiculata which comprises these great sub-phyla.

Grade A.—Hyparthropoda.
Hypothetical forms.

Grade B.—Protarthropoda.

(a) The integument is covered by a delicate soft cuticle (not firm or plated) which allows the body and its appendages great range of extension and contraction.

(b) The paired claws on the ends of the parapodia and the fang-like modifications of these on the first post-oral appendages (mandibles) are the only hard chitinous portions of the integument.