A practical acquaintance with the elements of astronomy is indispensable to the conduct of human life. Hence it is most widely diffused among uncivilized peoples, whose existence depends upon immediate and unvarying Origin of the science. submission to the dictates of external nature. Having no clocks, they regard instead the face of the sky; the stars serve them for almanacs; they hunt and fish, they sow and reap in correspondence with the recurrent order of celestial appearances. But these, to the untutored imagination, present a mystical, as well as a mechanical aspect; and barbaric familiarity with the heavens developed at an early age, through the promptings of superstition, into a fixed system of observation. In China, Egypt and Babylonia, strength and continuity were lent to this native tendency by the influence of a centralized authority; considerable proficiency was attained in the arts of observation; and from millennial stores of accumulated data, empirical rules were deduced by which the scope of prediction was widened and its accuracy enhanced. But no genuine science of astronomy was founded until the Greeks sublimed experience into theory.

Already, in the third millennium B.C., equinoxes and solstices were determined in China by means of culminating stars. This is known from the orders promulgated by the emperor Yao about 2300 B.C., as recorded in the Shu Chung, Chinese astronomy. a collection of documents antique in the time of Confucius (550-478 B.C.). And Yao was merely the renovator of a system long previously established. The Shu Chung further relates the tragic fate of the official astronomers, Hsi and Ho, put to death for neglecting to perform the rites customary during an eclipse of the sun, identified by Professor S.E. Russell[1] with a partial obscuration visible in northern China 2136 B.C. The date cannot be far wrong, and it is by far the earliest assignable to an event of the kind. There is, however, no certainty that the Chinese were then capable of predicting eclipses. They were, on the other hand, probably acquainted, a couple of millenniums before Meton gave it his name, with the nineteen-year cycle, by which solar and lunar years were harmonized;[2] they immemorially made observations in the meridian; regulated time by water-clocks, and used measuring instruments of the nature of armillary spheres and quadrants. In or near 1100 B.C., Chou Kung, an able mathematician, determined with surprising accuracy the obliquity of the ecliptic; but his attempts to estimate the sun’s distance failed hopelessly as being grounded on belief in the flatness of the earth. From of old, in China, circles were divided into 365¼ parts, so that the sun described daily one Chinese degree; and the equator began to be employed as a line of reference, concurrently with the ecliptic, probably in the second century B.C. Both circles, too, were marked by star-groups more or less clearly designated and defined. Cometary records of a vague kind go back in China to 2296 B.C.; they are intelligible and trustworthy from 611 B.C. onward. Two instruments constructed at the time of Kublai Khan’s accession in 1280 were still extant at Peking in 1881. They were provided with large graduated circles adapted for measurements of declination and right ascension, and prove the Chinese to have anticipated by at least three centuries some of Tycho Brahe’s most important inventions.[3] The native astronomy was finally superseded in the 17th century by the scientific teachings of Jesuit missionaries from Europe.

Astrolatry was, in Egypt, the prelude to astronomy. The stars were observed that they might be duly worshipped. The importance of their heliacal risings, or first visible appearances at dawn, for the purposes both of practical Egyptian astronomy. life and of ritual observance, caused them to be systematically noted; the length of the year was accurately fixed in connexion with the annually recurring Nile-flood; while the curiously precise orientation of the Pyramids affords a lasting demonstration of the high degree of technical skill in watching the heavens attained in the third millennium B.C. The constellational system in vogue among the Egyptians appears to have been essentially of native origin; but they contributed little or nothing to the genuine progress of astronomy.

With the Babylonians the case was different, although their science lacked the vital principle of growth imparted to it by their successors. From them the Greeks derived their first notions of astronomy. They copied the Babylonian Babylonian astronomy. asterisms, appropriated Babylonian knowledge of the planets and their courses, and learned to predict eclipses by means of the “Saros.” This is a cycle of 18 years 11 days, or 223 lunations, discovered at an unknown epoch in Chaldaea, at the end of which the moon very nearly returns to her original position with regard as well to the sun as to her own nodes and perigee. There is no getting back to the beginning of astronomy by the shores of the Euphrates. Records dating from the reign of Sargon of Akkad (3800 B.C.) imply that even then the varying aspects of the sky had been long under expert observation. Thus early, there is reason to suppose, the star-groups with which we are now familiar began to be formed. They took shape most likely, not through one stroke of invention, but incidentally, as legends developed and astrological persuasions became defined.[4] The zodiacal series in particular seem to have been reformed and reconstructed at wide intervals of time (see [Zodiac]). Virgo, for example, is referred by P. Jensen, on the ground of its harvesting associations, to the fourth millennium B.C., while Aries (according to F.K. Ginzel) was interpolated at a comparatively recent time. In the main, however, the constellations transmitted to the West from Babylonia by Aratus and Eudoxus must have been arranged very much in their present order about 2800 B.C. E.W. Maunder’s argument to this effect is unanswerable.[5] For the space of the southern sky left blank of stellar emblazonments was necessarily centred on the pole; and since the pole shifts among the stars through the effects of precession by a known annual amount, the ascertainment of any former place for it virtually fixes the epoch. It may then be taken as certain that the heavens described by Aratus in 270 B.C. represented approximately observations made some 2500 years earlier in or near north latitude 40°.

In the course of ages, Babylonian astronomy, purified from the astrological taint, adapted itself to meet the most refined needs of civil life. The decipherment and interpretation by the learned Jesuits, Fathers Epping and Strassmeier, of a number of clay tablets preserved in the British Museum, have supplied detailed knowledge of the methods practised in Mesopotamia in the 2nd century B.C.[6] They show no trace of Greek influence, and were doubtless the improved outcome of an unbroken tradition. How protracted it had been, can be in a measure estimated from the length of the revolutionary cycles found for the planets. The Babylonian computers were not only aware that Venus returns in almost exactly eight years to a given starting-point in the sky, but they had established similar periodic relations in 46, 59, 70 and 83 years severally for Mercury, Saturn, Mars and Jupiter. They were accordingly able to fix in advance the approximate positions of these objects with reference to ecliptical stars which served as fiducial points for their determination. In the Ephemerides published year by year, the times of new moon were given, together with the calculated intervals to the first visibility of the crescent, from which the beginning of each month was reckoned; the dates and circumstances of solar and lunar eclipses were predicted; and due information was supplied as to the forthcoming heliacal risings and settings, conjunctions and oppositions of the planets. The Babylonians knew of the inequality in the daily motion of the sun, but misplaced by 10° the perigee of his orbit. Their sidereal year was 4½m too long,[7] and they kept the ecliptic stationary among the stars, making no allowance for the shifting of the equinoxes. The striking discovery, on the other hand, has been made by the Rev. F.X. Kugler[8] that the various periods underlying their lunar predictions were identical with those heretofore believed to have been independently arrived at by Hipparchus, who accordingly must be held to have borrowed from Chaldaea the lengths of the synodic, sidereal, anomalistic and draconitic months.

A steady flow of knowledge from East to West began in the 7th century B.C. A Babylonian sage named Berossus founded a school about 640 B.C. in the island of Cos, and perhaps Greek astronomy. Thales. counted Thales of Miletus (c. 639-548) among his pupils. The famous “eclipse of Thales” in 585 B.C. has not, it is true, been authenticated by modern research;[9] yet the story told by Herodotus appears to intimate that a knowledge of the Saros, and of the forecasting facilities connected with it, was possessed by the Ionian sage. Pythagoras of Samos (fl. 540-510 B.C.) learned on his travels Pythagoras. in Egypt and the East to identify the morning and evening stars, to recognize the obliquity of the ecliptic, and to regard the earth as a sphere freely poised in space. The tenet of its axial movement was held by many of his followers—in an obscure form by Philolaus of Crotona after the middle of the 5th century B.C., and more explicitly by Ecphantus and Hicetas of Syracuse (4th century B.C.), and by Heraclides Heraclides. of Pontus. Heraclides, who became a disciple of Plato in 360 B.C., taught in addition that the sun, while circulating round the earth, was the centre of revolution to Venus and Mercury.[10] A genuine heliocentric system, developed by Aristarchus of Samos (fl. 280-264 B.C.), was described by Archimedes in his Arenarius, only to be set aside with disapproval. The long-lived conception of a series of crystal spheres, acting as the vehicles of the heavenly bodies, and attuned to divine harmonies, seems to have originated with Pythagoras himself.

The first mathematical theory of celestial appearances was devised by Eudoxus of Cnidus (408-355 B.C.).[11] The problem he attempted to solve was so to combine uniform circular movements as to produce the resultant effects actually Eudoxus. observed. The sun and moon and the five planets were, with this end in view, accommodated each with a set of variously revolving spheres, to the total number of 27. The Eudoxian or “homocentric” system, after it had been further elaborated by Callippus and Aristotle, was modified by Apollonius of Perga (fl. 250-220 B.C.) into the hypothesis of deferents and epicycles, which held the field for 1800 years as the characteristic embodiment of Greek ideas in astronomy. Eudoxus further wrote two works descriptive of the heavens, the Enoptron and Phaenomena, which, substantially preserved in the Phaenomena of Aratus (fl. 270 B.C.), provided all the leading features of modern stellar nomenclature.

Greek astronomy culminated in the school of Alexandria. It was, soon after its foundation, illustrated by the labours of School of Alexandria. Aristyllus and Timocharis (c. 320-260 B.C.), who constructed the first catalogue giving star-positions as measured from a reference-point in the sky. This fundamental advance rendered inevitable the detection of precessional effects. Aristarchus of Samos observed at Alexandria 280-264 B.C. His treatise on the magnitudes and distances of the sun and moon, Aristarchus. edited by John Wallis in 1688, describes a theoretically valid method for determining the relative distances of the sun and moon by measuring the angle between their centres when half the lunar disk is illuminated; but the time of dichotomy being widely indeterminate, no useful result was thus obtainable. Aristarchus in fact concluded the sun to be not more than twenty times, while it is really four hundred times farther off than our satellite. His general conception of the universe was comprehensive beyond that of any of his predecessors.

Eratosthenes (276-196 B.C.), a native of Cyrene, was summoned from Athens to Alexandria by Ptolemy Euergetes to take charge of the royal library. He invented, or improved armillary spheres, the chief implements of ancient Eratosthenes. astrometry, determined the obliquity of the ecliptic at 23° 51′ (a value 5′ too great), and introduced an effective mode of arc-measurement. Knowing Alexandria and Syene to be situated 5000 stadia apart on the same meridian, he found the sun to be 7° 12′ south of the zenith at the northern extremity of this arc when it was vertically overhead at the southern extremity, and he hence inferred a value of 252,000 stadia for the entire circumference of the globe. This is a very close approximation to the truth, if the length of the unit employed has been correctly assigned.[12]

Among the astronomers of antiquity, two great men stand out with unchallenged pre-eminence. Hipparchus and Ptolemy entertained the same large organic designs; they worked on similar methods; and, as the outcome, Hipparchus. their performances fitted so accurately together that between them they re-made celestial science. Hipparchus fixed the chief data of astronomy—the lengths of the tropical and sidereal years, of the various months, and of the synodic periods of the five planets; determined the obliquity of the ecliptic and of the moon’s path, the place of the sun’s apogee, the eccentricity of his orbit, and the moon’s horizontal parallax; all with approximate accuracy. His loans from Chaldaean experts appear, indeed, to have been numerous; but were doubtless independently verified. His supreme merit, however, consisted in the establishment of astronomy on a sound geometrical basis. His acquaintance with trigonometry, a branch of science initiated by him, together with his invention of the planisphere, enabled him to solve a number of elementary problems; and he was thus led to bestow especial attention upon the position of the equinox, as being the common point of origin for measures both in right ascension and longitude. Its steady retrogression among the stars became manifest to him in 130 B.C., on comparing his own observations with those made by Timocharis a century and a half earlier; and he estimated at not less than 36″ (the true value being 50″) the annual amount of “precession.”