In a general way Table V. warrants the conclusion that years of many sun-spots are years of many auroras, and years of few sun-spots years of few auroras; but it does not disclose any very definite relationship between the two frequencies. The maxima and minima in the two phenomena in a good many cases are not found in the same years. On the other hand, there is absolute coincidence in a number of cases, some of them very striking, as for instance the remarkably low minima of 1810 and 1823.
11. During the period 1764 to 1872 there have been ten years of maximum, and ten of minimum, in sun-spot frequency. Taking the three years of greatest frequency at each maximum, and the three years of least frequency at each minimum, we get thirty years of many and thirty of few sun-spots. Also we can split the period into an earlier half, 1764 to 1817, and a later half, 1818 to 1872, containing respectively the earlier five and the later five of the above groups of sun-spot maximum and minimum years. The annual means derived from the whole group, and the two sub-groups, of years of many and few sun-spots are as follows:—
| Years of | 1764-1872. | 1764-1817. | 1818-1872. | |||
| Spots. | Auroras. | Spots. | Auroras. | Spots. | Auroras. | |
| Many sun-spots | 93.4 | 99.9 | 86.7 | 70.7 | 100.1 | 129.1 |
| Few sun-spots | 13.4 | 61.5 | 13.6 | 51.6 | 13.1 | 71.3 |
In each case the excess of auroras in the group of years of many sun-spots is decided, but the results from the two sub-periods do not harmonize closely. The mean sun-spot frequency for the group of years of few sun-spots is almost exactly the same for the two sub-periods, but the auroral frequency for the later group is nearly 40% in excess of that for the earlier, and even exceeds the auroral frequency in the years of many sun-spots in the earlier sub-period. This inconsistency, though startling at first sight, is probably more apparent than real. It is almost certainly due in large measure to a progressive change in one or both of the units of frequency. In the case of sun-spots, A. Schuster (13) has compared J.R. Wolf and A. Wolfer’s frequencies with data obtained by other observers for areas of sun-spots, and his figures show unquestionably that the unit in one or other set of data must have varied appreciably from time to time. Wolf and Wolfer have, however, aimed persistently at securing a definite standard, and there are several reasons for believing that the change of unit has been in the auroral rather than the sun-spot frequency. R. Rubenson (14), from whom Tromholt derives his data for Sweden, seems to accept this view, assigning the apparent increase in auroral frequency since 1860 to the institution by the state of meteorological stations in 1859, and to the increased interest taken in the subject since 1865 by the university of Upsala. The figures themselves in Table V. certainly point to this conclusion, unless we are prepared to believe that auroras have increased enormously in number. If, for instance, we compare the first and the last three 11-year cycles for which Table V. gives complete data, we obtain as yearly means:—
| 1749-1781 | Sun-spots | 56.4 | Auroras | 77.5 |
| 1844-1876 | ” | 55.8 | ” | 112.2 |
The mean sun-spot frequencies in the two periods differ by only 1%, but the auroral frequency in the later period is 45% in excess of that in the earlier.
The above figures would be almost conclusive if it were not for the conspicuous differences that exist between the mean sun-spot frequencies for different 11-year periods. Schuster, who has considered the matter very fully, has found evidence of the existence of other periods—notably 8.4 and 4.8 years—in addition to the recognized period of 11.125 years, and he regards the difference between the maxima in successive 11-year periods as due at least partly to an overlapping of maxima from the several periodic terms. This cannot, however, account for all the fluctuations observed in sun-spot frequencies, unless other considerably longer periods exist. There has been at least one 33-year period during which the mean value of sun-spot frequency has been exceptionally low, and, as we shall see, there was a corresponding remarkable scarcity of auroras. The period in question may be regarded as extending from 1794 to 1826 inclusive. Comparing it with the two adjacent periods of thirty-three years, we obtain the following for the mean annual frequencies:—
| 33-Year Period. | Sun-spots. | Auroras. |
| 1761-1793 | 65.6 | 76.1 |
| 1794-1826 | 20.3 | 39.5 |
| 1827-1859 | 56.1 | 84.4 |
12. The association of high auroral and sun-spot frequencies shown in Table V. is not peculiar to Scandinavia. It is shown, for instance, in Loomis’s auroral data, which are based on observations at a variety of European and American stations (Ency. Brit. 9th ed. art. [Meteorology], Table XXVIII.). It does not seem, however, to apply universally. Thus at Godthaab we have, according to Adam Paulsen (15), comparing 3-year periods of few and many sun-spots:—
| 3-Year Period. | Total Sun-spot Frequency. | Total Nights of Aurora. |
| 1865-1868 | 48 | 274 |
| 1869-1872 | 339 | 138 |
| 1876-1879 | 23 | 273 |