The absence of active volcanoes in Australia is a state of things, in a geological sense, quite new to the continent. Some of the volcanoes of the western districts of Victoria have been in eruption probably subsequent to the advent of the black-fellow. In some instances the cones are quite intact, and the beds of ash and scoriae are as yet almost unaffected by denuding agencies. Late in the Tertiary period vast sheets of lava poured from many points of the Great Dividing Range of eastern Australia. But it is notable that all recent volcanic action was confined to a wide belt parallel to the coast. No evidences of recent lava flows can be found in the interior over the great alluvial plain, the Lower, or the Higher Steppes. Nor has the continent, as a whole, in recent times been subjected to any violent earth tremors; though in 1873, to the north of Lake Amadeus, in central Australia, Ernest Giles records the occurrence of earthquake shocks violent enough to dislodge considerable rock masses.

Australia possesses one mountain which, though not a volcano, is a “burning mountain.” This is Mount Wingen, situated in a spur of the Liverpool Range and close to the town of Scone. Its fires are not volcanic, but result from the combustion of coal some distance underground, giving off much smoke and steam; geologists estimate that the burning has been going on for at least 800 years.

The coastal belt of Australia is everywhere well watered, with the exception of the country around the Great Australian Bight and Spencer Gulf. Flowing into the Pacific Ocean on the east coast there are some fine rivers, but the majority have Rivers. short and rapid courses. In Queensland a succession of rivers falls into the Pacific from Cape York to the southern boundary of the state. The Burdekin is the finest of these, draining an area of 53,500 sq. m., and emptying into Upstart Bay; it receives numerous tributaries in its course, and carries a large body of fresh water even in the driest seasons. The Fitzroy river is the second in point of size; it drains an area of 55,600 sq. m., and receives several tributary streams during its course to Keppel Bay. The Brisbane river, falling into Moreton Bay, is important chiefly from the fact that the city of Brisbane is situated on its banks. In New South Wales there are several important rivers, the largest of which is the Hunter, draining 11,000 sq. m., and having a course of 200 m. Taking them from north to south, the principal rivers are the Richmond, Clarence, Macleay, Hastings, Manning, Hunter, Hawkesbury and Shoalhaven. The Snowy river has the greater part of its course in New South Wales, but its mouth and the last 120 m. are in Victoria. The other rivers worth mentioning are the Yarra, entering the sea at Port Phillip, Hopkins and Glenelg. The Murray (q.v.), the greatest river of Australia, debouches into Lake Alexandrina, and thence into the sea at Encounter Bay in South Australia. There are no other rivers of importance in South Australia, but the Torrens and the Gawler may be mentioned. Westward of South Australia, on the shores of the Australian Bight, there is a stretch of country 300 m. in length unpierced by any streams, large or small, but west of the bight, towards Cape Leeuwin, some small rivers enter the sea. The south-west coast is watered by a few streams, but none of any size; amongst these is the Swan, upon which Perth, the capital of Western Australia, is built. Between the Swan and North-West Cape the principal rivers are the Greenough, Murchison and Gascoyne; on the north-west coast, the Ashburton, Fortescue and De Grey; and in the Kimberley district, the Fitzroy, Panton, Prince Regent and the Ord. In the Northern Territory are several fine rivers. The Victoria river is navigable for large vessels for a distance of about 43 m. from the sea, and small vessels may ascend for another 80 m. The Fitzmaurice, discharging into the estuary of the Victoria, is also a large stream. The Daly, which in its upper course is called the Katherine, is navigable for a considerable distance, and small vessels are able to ascend over 100 m. The Adelaide, discharging into Adam Bay, has been navigated by large vessels for about 38 m., and small vessels ascend still farther. The South Alligator river, flowing into Van Diemen’s Gulf, is also a fine stream, navigable for over 30 m. by large vessels; the East Alligator river, falling into the same gulf, has been navigated for 40 m. Besides those mentioned, there are a number of smaller rivers discharging on the north coast, and on the west shore of the Gulf of Carpentaria the Roper river discharges itself into Limmen Bight. The Roper is a magnificent stream, navigable for about 75 or 80 m. by vessels of the largest tonnage, and light draught vessels can ascend 20 m. farther. Along the portion of the south shore of the Gulf of Carpentaria which belongs to Queensland and the east coast, many large rivers discharge their waters, amongst them the Norman, Flinders, Leichhardt, Albert and Gregory on the southern shore, and the Batavia, Archer, Coleman, Mitchell, Staaten and Gilbert on the eastern shore. The rivers flowing into the Gulf of Carpentaria, as well as those in the Northern Territory, drain country which is subject to regular monsoonal rains, and have the general characteristics of sub-tropical rivers.

The network of streams forming the tributaries of the Darling and Murray system give an idea of a well-watered country. The so-called rivers have a strong flow only after heavy rains, and some of them do not ever reach the main drainage line. Flood waters disappear often within a distance of a few miles, being absorbed by porous soil, stretches of sand, and sometimes by the underlying bed-rocks. In many cases the rivers as they approach the main stream break up into numerous branches, or spread their waters over vast flats. This is especially the case with the tributaries of the Darling on its left bank, where in seasons of great rains these rivers overspread their banks and flood the flat country for miles around and thus reach the main stream. Lieutenant John Oxley went down the Lachlan (1817) during one of these periods of flood, and the great plains appeared to him to be the fringe of a vast inland sea. As a matter of fact, they are an alluvial deposit spread out by the same flood waters. The great rivers of Australia, draining inland, carve out valleys, dissolve limestone, and spread out their deposit over the plains when the waters become too sluggish to bear their burden farther. From a geological standpoint, the Great Australian Plain and the fertile valley of the Nile have had a similar origin. Taking the Lachlan as one type of Australian river, we find it takes its rise amongst the precipitous and almost unexplored valleys of the Great Dividing Range. With the help of its tributaries it acts as a denuding agent for 14,000 sq. m. of country, and carries its burden of sediment westwards. A point is reached about 200 m. from the Dividing Range, where the river ceases to act as a denuding agent, and the area of deposition begins, at a level of 250 ft. above the sea, but before the waters can reach the ocean they have still to travel about 1000 m.

The Darling is reckoned amongst the longest rivers in the world, for it is navigable, part of the year, from Walgett to its confluence with the Murray, 1758 m., and then to the sea, a further distance of 587 m.—making in all 2345 m. of navigable water. But this gives no correct idea of the true character of the Darling, for it can hardly be said to drain its own watershed. From the sources of its various tributaries to the town of Bourke, the river may be described as draining a watershed. But from Bourke to the sea, 550 m. in a direct line, the river gives rather than receives water from the country it flows through.

The annual rainfall and the area of the catchment afford no measure whatever as to the size of a river in the interior of Australia. The discharge of the Darling river at Bourke does not amount to more than 10% of the rainfall over the country which it drains. It was this remarkable fact which first led to the idea that, as the rainfall could not be accounted for either by evaporation or by the river discharge, much of the 90% unaccounted for must sink into the ground, and in part be absorbed by some underlying bed-rock. All Australian rivers, except the Murray and the Murrumbidgee, depend entirely and directly on the rainfall. They are flooded after rain, and in seasons of drought many of them, especially the tributaries of the Darling, become chains of ponds. Springs which would equalize the discharge of rivers by continuing to pour water into their beds after the rainy season has passed seem entirely absent in the interior. Nor are there any snowfields to feed rivers, as in the other continents. More remarkable still, over large tracts of country the water seems disposed to flow away from, rather than to, the river-beds. As the low-lying plains are altogether an alluvial deposit, the coarser sediments accumulate in the regions where the river first overflows its banks to spread out over the plains. The country nearest the river receiving the heaviest deposit becomes in this way the highest ground, and so continues until a “break-away” occurs, when a new river-bed is formed, and the same process of deposition and accumulation is repeated. As the general level of the country is raised by successive alluvial deposits, the more ancient river-beds become buried, but being still connected with the newer rivers at some point or other, they continue to absorb water. This underground network of old river-beds underlying the great alluvial plains must be filled to repletion before flood waters will flow over the surface. It is not surprising, therefore, that comparatively little of the rainfall over the vast extent of the great central plain ever reaches the sea by way of the river systems; indeed these systems as usually shown on the maps leave a false impression as to the actual condition of things.

The great alluvial plain is one of Australia’s most notable inland features; its extent is upwards of 500,000 sq. m., lying east of 135° W. and extending right across the continent from the Gulf of Carpentaria to the Murray river. The interior Steppes. of the continent west of 135° and north of the Musgrave ranges is usually termed by geographers the Australian Steppes. It is entirely different in all essential features from the great alluvial plains. Its prevailing aspect is characterized by flat and terraced hills, capped by desert sandstone, with stone-covered flats stretching over long distances. The country round Lake Eyre, where some of the land is actually below sea-level, comes under this heading. The higher steppes, as far as they are known, consist of Ordovician and Cambrian rocks, with an average elevation of 1500 to 3000 ft. above sea-level. Over this country water-courses are shown on maps. These run in wet seasons, but in every instance for a short distance only, and sooner or later they are lost in sand-hills, where their waters disappear and a line of stunted gum-trees (Eucalyptus rostrata) is all that is present to indicate that there may be even a soakage to mark the abandoned course. The steppes cover a surface of 400,000 sq. m., and from this vast expanse not a drop of the scanty rainfall reaches the sea; there is no leading drainage system and there are no rivers. Another notable feature of the interior is the so-called lake area, a district stretching to the north of Spencer Gulf. These Lakes. lakes are expanses of brackish waters that spread or contract as the season is one of drought or rain. In seasons of drought they are hardly more than swamps and mud flats, which for a time may become a grassy plain, or desolate coast encrusted with salt. The country around is the dreariest imaginable, the surface is a dead level, there is no heavy timber and practically no settlement. Lake Torrens, the largest of these depressions, sometimes forms a sheet of water 100 m. in length. To the north again stretches Lake Eyre, and to the west Lake Gairdner. Some of these lake-beds are at or slightly below sea-level, so that a very slight depression of the land to the south of them would connect much of the interior with the Southern Ocean.

(T. A. C.)

Geology.—The states of Australia are divided by natural boundaries, which separate geographical areas having different characters, owing, mainly, to their different geological structures. Hence the general stratigraphical geology can be most conveniently summarized for each state separately, dealing here with the geological history of Australia as a whole. Australia is essentially the fragment of a great plateau land of Archean rocks. It consists in the main of an Archean block or “coign,” which still occupies nearly the whole of the western half of the continent, outcrops in north-eastern Queensland, forms the foundation of southern New South Wales and eastern Victoria, and is exposed in western Victoria, in Tasmania, and in the western flank of the Southern Alps of New Zealand. These areas of Archean rocks were doubtless once continuous. But they have been separated by the foundering of the Coral Sea and the Tasman Sea, which divided the continent of Australia from the islands of the Australasian festoon; and the foundering of the band across Australia, from the Gulf of Carpentaria, through western Queensland and western New South Wales, to the lower basin of the Murray, has separated the Archean areas of eastern and western Australia. The breaking up of the old Archean foundation block began in Cambrian and Ordovician times. A narrow Cambrian sea must have extended across central Australia from the Kimberley Goldfield in the north-west, through Tempe Downs and the Macdonnell chain in central Australia, to the South Australian highlands, central Victoria at Mansfield, and northern Tasmania. Cambrian rocks occur in each of these districts, and they are best developed in the South Australian highlands, where they include a long belt of contemporary glacial deposits. Marine Ordovician rocks were deposited along the same general course. They are best developed in the Macdonnell chain in central Australia and in Victoria, where the fullest sequence is known; while they also extended north-eastward from Victoria into New South Wales, where, as yet, no Cambrian rocks have been found. The Silurian system was marked by the retreat of the sea from central Australia; but the sea still covered a band across Victoria, from the coast to the Murray basin, passing to the east of Melbourne. This Silurian sea was less extensive than the Ordovician in Victoria; but it appears to have been wider in New South Wales and in Queensland. The best Silurian sequence is in New South Wales. Silurian rocks are well developed in western Tasmania, and the Silurian sea must have washed the south-western corner of the continent, if the rocks of the Stirling Range be rightly identified as of this age.