This throws a new light on the question, and from it the inference at once follows, that the forms are the permanent causes or substances underlying all visible phenomena, which are merely manifestations of their activity. Are the forms, then, forces? At times it seems as if Bacon had approximated to this view of the nature of things, for in several passages he identifies forms with laws of activity. Thus, he says—
"When I speak of forms I mean nothing more than those laws and determinations of absolute actuality which govern and constitute any simple nature, as heat, light, weight, in every kind of matter and subject that is susceptible of them. Thus the form of heat or the form of light is the same thing as the law of heat or the law of light."[[64]] "Matter rather than forms should be the object of our attention, its configurations and changes of configuration, and simple action, and law of action or motion; for forms are figments of the human mind, unless you will call those laws of action forms."[[65]] "Forms or true differences of things, which are in fact laws of pure act."[[66]] "For though in nature nothing really exists besides individual bodies, performing pure individual acts according to a fixed law, yet in philosophy this very law, and the investigation, discovery and explanation of it, is the foundation as well of knowledge as of operation. And it is this law, with its clauses, that I mean when I speak of forms."[[67]]
Several important conclusions may be drawn from these passages. In the first place, it is evident that Bacon, like the Atomical school, of whom he highly approved, had a clear perception and a firm grasp of the physical character of natural principles; his forms are no ideas or abstractions, but highly general physical properties. Further, it is hinted that these general qualities may be looked upon as the modes of action of simple bodies. This fruitful conception, however, Bacon does not work out; and though he uses the word cause, and identifies form with formal cause, yet it is perfectly apparent that the modern notions of cause as dynamical, and of nature as in a process of flow or development, are foreign to him, and that in his view of the ultimate problem of science, cause meant causa immanens, or underlying substance, effects were not consequents but manifestations, and nature was regarded in a purely statical aspect. That this is so appears even more clearly when we examine his general conception of the unity, gradation and function of the sciences. That the sciences are organically connected is a thought common to him and to his distinguished predecessor Roger Bacon. "I that hold it for a great impediment towards the advancement and further invention of knowledge, that particular arts and sciences have been disincorporated from general knowledge, do not understand one and the same thing which Cicero's discourse and the note and conceit of the Grecians in their word circle learning do intend. For I mean not that use which one science hath of another for ornament or help in practice; but I mean it directly of that use by way of supply of light and information, which the particulars and instances of one science do yield and present for the framing or correcting of the axioms of another science in their very truth and notion."[[68]] In accordance with this, Bacon placed at the basis of the particular sciences which treat of God, nature and man, one fundamental doctrine, the Prima Philosophia, or first philosophy, the function of which was to display the unity of nature by connecting into one body of truth such of the highest axioms of the subordinate sciences as were not special to one science, but common to several.[[69]] This first philosophy had also to investigate what are called the adventitious or transcendental conditions of essences, such as Much, Little, Like, Unlike, Possible, Impossible, Being, Nothing, the logical discussion of which certainly belonged rather to the laws of reasoning than to the existence of things, but the physical or real treatment of which might be expected to yield answers to such questions as, why certain substances are numerous, others scarce; or why, if like attracts like, iron does not attract iron. Following this summary philosophy come the sciences proper, rising like a pyramid in successive stages, the lowest floor being occupied by natural history or experience, the second by physics, the third, which is next the peak of unity, by metaphysics.[[70]] The knowledge of the peak, or of the one law which binds nature together, is perhaps denied to man. Of the sciences, physics, as has been already seen, deals with the efficient and material, i.e. with the variable and transient, causes of things. But its inquiries may be directed either towards concrete bodies or towards abstract qualities. The first kind of investigation rises little above mere natural history; but the other is more important and paves the way for metaphysics. It handles the configurations and the appetites or motions of matter. The configurations, or inner structure of bodies, include dense, rare, heavy, light, hot, cold, &c.,—in fact, what are elsewhere called simple natures. Motions[[71]] are either simple or compound, the latter being the sum of a number of the former. In physics, however, these matters are treated only as regards their material or efficient causes, and the result of inquiry into any one case gives no general rule, but only facilitates invention in some similar instance. Metaphysics, on the other hand, treats of the formal or final cause of[[72]] these same substances and qualities, and results in a general rule. With regard to forms, the investigation may be directed either towards concrete bodies or towards qualities. But the forms of substances "are so perplexed and complicated, that it is either vain to inquire into them at all, or such inquiry as is possible should be put off for a time, and not entered upon till forms of a more simple nature have been rightly investigated and discussed."[[73]] "To inquire into the form of a lion, of an oak, or gold, nay, even of water or air, is a vain pursuit; but to inquire the form of dense, rare, hot, cold, &c., as well configurations as motions, which in treating of physic I have in
great part enumerated (I call them forms of the first class), and which (like the letters of the alphabet) are not many, and yet make up and sustain the essences and forms of all substances—this, I say, it is which I am attempting, and which constitutes and defines that part of metaphysic of which we are now inquiring." Physics inquires into the same qualities, but does not push its investigations into ultimate reality or reach the more general causes. We thus at last attain a definite conclusion with regard to forms, and it appears clear that in Bacon's belief the true function of science was the search for a few fundamental physical qualities, highly abstract and general, the combinations of which give rise to the simple natures and complex phenomena around us. His general conception of the universe may therefore be called mechanical or statical; the cause of each phenomenon is supposed to be actually contained in the phenomenon itself, and by a sufficiently accurate process could be sifted out and brought to light. As soon as the causes are known man regains his power over nature, for "whosoever knows any form, knows also the utmost possibility of superinducing that nature upon every variety of matter, and so is less restrained and tied in operation either to the basis of the matter or to the condition of the efficients."[[74]]
Nature thus presented itself to Bacon's mind as a huge congeries of phenomena, the manifestations of some simple and primitive qualities, which were hid from us by the complexity of the things themselves. The world was a vast labyrinth, amid the windings of which we require some clue or thread whereby we may track our way to knowledge and thence to power. This thread, the filum labyrinthi, is the new method of induction. But, as has been frequently pointed out, the new method could not be applied until facts had been observed and collected. This is an indispensable preliminary. "Man, the servant and interpreter of nature, can do and understand so much, and so much only, as he has observed in fact or in thought of the course of nature; beyond this he neither knows anything nor can do anything." The proposition that our knowledge of nature necessarily begins with observation and experience, is common to Bacon and many contemporary reformers of science, but he laid peculiar stress upon it, and gave it a new meaning. What he really meant by observation was a competent natural history or collection of facts. "The firm foundations of a purer natural philosophy are laid in natural history."[[75]] "First of all we must prepare a natural and experimental history, sufficient and good; and this is the foundation of all."[[76]] The senses and the memory, which collect and store up facts, must be assisted; there must be a ministration of the senses and another of the memory. For not only are instances required, but these must be arranged in such a manner as not to distract or confuse the mind, i.e. tables and arrangements of instances must be constructed. In the preliminary collection the greatest care must be taken that the mind be absolutely free from preconceived ideas; nature is only to be conquered by obedience; man must be merely receptive. "All depends on keeping the eye steadily fixed upon the facts of nature, and so receiving their images simply as they are; for God forbid that we should give out a dream of our own imagination for a pattern of the world; rather may He graciously grant to us to write an apocalypse or true vision of the footsteps of the Creator imprinted on his creatures."[[77]] Concealed among the facts presented to sense are the causes or forms, and the problem therefore is so to analyse experience[[78]], so to break it up into pieces, that we shall with certainty and mechanical ease arrive at a true conclusion. This process, which forms the essence of the new method, may in its entirety, as a ministration to the reason, be called a logic; but it differs widely from the ordinary or school logic in end, method and form. Its aim is to acquire command over nature by knowledge, and to invent new arts, whereas the old logic strove only after dialectic victories and the discovery of new arguments. In method the difference is even more fundamental. Hitherto the mode of demonstration had been by the syllogism; but the syllogism is, in many respects, an incompetent weapon. It is compelled to accept its first principles on trust from the science in which it is employed; it cannot cope with the subtlety of nature; and it is radically vitiated by being founded on hastily and inaccurately abstracted notions of things. For a syllogism consists of propositions, propositions of words, and words are the symbols of notions. Now the first step in accurate progress from sense to reason, or true philosophy, is to frame a bona notio or accurate conception of the thing; but the received logic never does this. It flies off at once from experience and particulars to the highest and most general propositions, and from these descends, by the use of middle terms, to axioms of lower generality. Such a mode of procedure may be called anticipatio naturae (for in it reason is allowed to prescribe to things), and is opposed to the true method, the interpretatio naturae, in which reason follows and obeys nature, discovering her secrets by obedience and submission to rule. Lastly, the very form of induction that has been used by logicians in the collection of their instances is a weak and useless thing. It is a mere enumeration of a few known facts, makes no use of exclusions or rejections, concludes precariously, and is always liable to be overthrown by a negative instance.[[79]] In radical opposition to this method the Baconian induction begins by supplying helps and guides to the senses, whose unassisted information could not be relied on. Notions were formed carefully, and not till after a certain process of induction was completed.[[80]] The formation of axioms was to be carried on by a gradually ascending scale. "Then and only then may we hope well of the sciences, when in a just scale of ascent and by successive steps, not interrupted or broken, we rise from particulars to lesser axioms; and then to middle axioms, one above the other; and last of all to the most general."[[81]] Finally the very form of induction itself must be new. "The induction which is to be available for the discovery and demonstration of sciences and arts must analyse nature by proper rejections and exclusions; and then, after a sufficient number of negatives, come to a conclusion on the affirmative instances, which has not yet been done, or even attempted, save only by Plato.[[82]] ... And this induction must be used not only to discover axioms, but also in the formation of notions."[[83]] This view of the function of exclusion is closely connected with Bacon's doctrine of forms,
and is in fact dependent upon that theory. But induction is neither the whole of the new method, nor is it applicable to forms only. There are two other grand objects of inquiry: the one, the transformation of concrete bodies; the other, the investigation of the latent powers and the latent schematism or configuration. With regard to the first, in ultimate result it depends upon the theory of forms; for whenever the compound body can be regarded as the sum of certain simple natures, then our knowledge of the forms of these natures gives us the power of superinducing a new nature on the concrete body. As regards the latent process (latens processus) which goes on in all cases of generation and continuous development or motion, we examine carefully, and by quantitative measurements, the gradual growth and change from the first elements to the completed thing. The same kind of investigation may be extended to many cases of natural motion, such as voluntary action or nutrition; and though inquiry is here directed towards concrete bodies, and does not therefore penetrate so deeply into reality as in research for forms, yet great results may be looked for with more confidence. It is to be regretted that Bacon did not complete this portion of his work, in which for the first time he approaches modern conceptions of change. The latent configuration (latens schematismus) or inward structure of the parts of a body must be known before we can hope to superinduce a new nature upon it. This can only be discovered by analysis, which will disclose the ultimate constituents (natural particles, not atoms) of bodies, and lead back the discussion to forms or simple natures, whereby alone can true light be thrown on these obscure questions. Thus, in all cases, scientific explanation depends upon knowledge of forms; all phenomena or secondary qualities are accounted for by being referred to the primary qualities of matter.
The several steps in the inductive investigation of the form of any nature flow readily from the definition of the form itself. For that is always and necessarily present when the nature is present, absent when it is absent, decreases and increases according as the nature decreases and increases. It is therefore requisite for the inquiry to have before us instances in which the nature is present. The list of these is called the table of Essence and Presence. Secondly, we must have instances in which the nature is absent; only as such cases might be infinite, attention should be limited to such of them as are most akin to the instances of presence.[[84]] The list in this case is called table of Absence in Proximity. Thirdly, we must have a number of instances in which the nature is present in different degrees, either increasing or decreasing in the same subject, or variously present in different subjects. This is the table of Degrees, or Comparison. After the formation of these tables, we proceed to apply what is perhaps the most valuable part of the Baconian method, and that in which the author took most pride, the process of exclusion or rejection. This elimination of the non-essential, grounded on the fundamental propositions with regard to forms, is the most important of Bacon's contributions to the logic of induction, and that in which, as he repeatedly says, his method differs from all previous philosophies. It is evident that if the tables were complete, and our notions of the respective phenomena clear, the process of exclusion would be a merely mechanical counting out, and would infallibly lead to the detection of the cause or form. But it is just as evident that these conditions can never be adequately fulfilled. Bacon saw that his method was impracticable (though he seems to have thought the difficulties not insuperable), and therefore set to work to devise new helps, adminicula. These he enumerates in ii., Aph. 21:—Prerogative Instances, Supports of Induction, Rectification of Induction, Varying the Investigation according to the Nature of the Subject, Prerogative Natures, Limits of Investigation, Application to Practice, Preparations for Investigation, the Ascending and Descending Scale of Axioms. The remainder of the Organum is devoted to a consideration of the twenty-seven classes of Prerogative Instances, and though it contains much that is both luminous and helpful, it adds little to our knowledge of what constitutes the Baconian method. On the other heads we have but a few scattered hints. But although the rigorous requirements of science could only be fulfilled by the employment of all these means, yet in their absence it was permissible to draw from the tables and the exclusion a hypothetical conclusion, the truth of which might be verified by the use of the other processes; such an hypothesis is called fantastically the First Vintage (Vindemiatio). The inductive method, so far as exhibited in the Organum, is exemplified by an investigation into the nature of heat.
Such was the method devised by Bacon, and to which he ascribed the qualities of absolute certainty and mechanical simplicity. But even supposing that this method were accurate and completely unfolded, it is evident that it could only be made applicable and produce fruit when the phenomena of the universe have been very completely tabulated and arranged. In this demand for a complete natural history, Bacon also felt that he was original, and he was deeply impressed with the necessity for it;[[85]] in fact, he seems occasionally to place an even higher value upon it than upon his Organum. Thus, in the preface to his series of works forming the third part of the Instauratio, he says: "It comes, therefore, to this, that my Organum, even if it were completed, would not without the Natural History much advance the Instauration of the Sciences, whereas the Natural History without the Organum would advance it not a little."[[86]] But a complete natural history is evidently a thing impossible, and in fact a history can only be collected by attending to the requirements of the Organum. This was seen by Bacon, and what may be regarded as his final opinion on the question is given in the important letter to Jean Antoine Baranzano[[87]] ("Redemptus": 1590-1622):—"With regard to the multitude of instances by which men may be deterred from the attempt, here is my answer. First, what need to dissemble? Either store of instances must be procured, or the business must be given up. All other ways, however enticing, are impassable. Secondly, the prerogatives of instances, and the mode of experimenting upon experiments of light (which I shall hereafter explain), will diminish the multitude of them very much. Thirdly, what matter, I ask, if the description of the instances should fill six times as many volumes as Pliny's History? ... For the true natural history is to take nothing except instances, connections, observations and canons."[[88]] The Organum and the History are thus correlative, and form the two equally necessary sides of a true philosophy; by their union the new philosophy is produced.
Summary.—Two questions may be put to any doctrine which professes to effect a radical change in philosophy or science. Is it original? Is it valuable? With regard to the first, it has been already pointed out that Bacon's induction or inductive method is distinctly his own, though it cannot and need not be maintained that the general spirit of his philosophy was entirely new.[[89]]
The value of the method is the separate and more difficult question. It has been assailed on the most opposite grounds. Macaulay, while admitting the accuracy of the process, denied its efficiency, on the ground that an operation performed naturally was not rendered more easy or efficacious by being subjected to analysis.[[90]] This objection is curious when confronted with Bacon's reiterated assertion that the natural method pursued by the unassisted human reason is distinctly opposed to his; and it is besides an argument that tells so strongly against many sciences, as to be comparatively worthless when applied to any one. There are, however, more formidable objections against the method. It has been pointed out,[[91]] and with perfect justice,