Fig. 17.—A plate-culture of a bacillus which had been exposed for a period of four hours behind a zinc stencil-plate, in which the letters C and B were cut. The light had to traverse a screen of water before passing through the C, and one of aesculin (which filters out the blue and violet rays) before passing the B. The plate was then incubated, and, as the figure shows, the bacteria on the C-shaped area were all killed, whereas they developed elsewhere on the plate (traces of the B are just visible to the right) and covered it with an opaque growth. (H. M. W.)

Another important advance is in our knowledge of the part Cellulose-bacteria. played by bacteria in the circulation of carbon in nature. The enormous masses of cellulose deposited annually on the earth's surface are, as we know, principally the result of chlorophyll action on the carbon dioxide of the atmosphere decomposed by energy derived from the sun; and although we know little as yet concerning the magnitude of other processes of carbon-assimilation—e.g. by nitrifying bacteria—it is probably comparatively small. Such cellulose is gradually reconverted into water and carbon dioxide, but for some time nothing positive was known as to the agents which thus break up the paper, rags, straw, leaves and wood, &c., accumulating in cesspools, forests, marshes and elsewhere in such abundance. The work of van Tieghem, van Senus, Fribes, Omeliansky and others has now shown that while certain anaerobic bacteria decompose the substance of the middle lamella—chiefly pectin compounds—and thus bring about the isolation of the cellulose fibres when, for instance, flax is steeped or "retted," they are unable to attack the cellulose itself. There exist in the mud of marshes, rivers and cloacae, &c., however, other anaerobic bacteria which decompose cellulose, probably hydrolysing it first and then splitting the products into carbon dioxide and marsh gas. When calcium sulphate is present, the nascent methane induces the formation of calcium carbonate, sulphuretted hydrogen and water. We have thus an explanation of the occurrence of marsh gas and sulphuretted hydrogen in bogs, and it is highly probable that the existence of these gases in the intestines of herbivorous animals is due to similar putrefactive changes in the undigested cellulose remains.

Cohn long ago showed that certain glistening particles observed Sulphur bacteria. in the cells of Beggiatoa consist of sulphur, and Winogradsky and Beyerinck have shown that a whole series of sulphur bacteria of the genera Thiothrix, Chromatium, Spirillum, Monas, &c., exist, and play important parts in the circulation of this element in nature, e.g. in marshes, estuaries, sulphur springs, &c. When cellulose bacteria set free marsh gas, the nascent gas reduces sulphates—e.g. gypsum—with liberation of SH2, and it is found that the sulphur bacteria thrive under such conditions by oxidizing the SH2 and storing the sulphur in their own protoplasm. If the SH2 runs short they oxidize the sulphur again to sulphuric acid, which combines with any calcium carbonate present and forms sulphate again. Similarly nascent methane may reduce iron salts, and the black mud in which these bacteria often occur owes its colour to the FeS formed. Beyerinck and Jegunow have shown that some partially anaerobic sulphur bacteria can only exist in strata at a certain depth below the level of quiet waters where SH2 is being set free below by the bacterial decompositions of vegetable mud and rises to meet the atmospheric oxygen coming down from above, and that this zone of physiological activity rises and falls with the variations of partial pressure of the gases due to the rate of evolution of the SH2. In the deeper parts of this zone the bacteria absorb the SH2, and, as they rise, oxidize it and store up the sulphur; then ascending into planes more highly oxygenated, oxidize the sulphur to SO3. These bacteria therefore employ SH2 as their respiratory substance, much as higher plants employ carbohydrates—instead of liberating energy as heat by the respiratory combustion of sugars, they do it by oxidizing hydrogen sulphide. Beyerinck has shown that Spirillum desulphuricans, a definite anaerobic form, attacks and reduces sulphates, thus undoing the work of the sulphur bacteria as certain de-nitrifying bacteria reverse the operations of nitro-bacteria. Here again, therefore, we have sulphur, taken

into the higher plants as sulphates, built up into proteids, decomposed by putrefactive bacteria and yielding SH2 which the sulphur bacteria oxidize, the resulting sulphur is then again oxidized to SO3 and again combined with calcium to gypsum, the cycle being thus complete.

Chalybeate waters, pools in marshes near ironstone, &c, Iron bacteria. abound in bacteria, some of which belong to the remarkable genera Crenothrix, Cladothrix and Leptothrix, and contain ferric oxide, i.e. rust, in their cell-walls. This iron deposit is not merely mechanical but is due to the physiological activity of the organism which, according to Winogradsky, liberates energy by oxidizing ferrous and ferric oxide in its protoplasm—a view not accepted by H. Molisch. The iron must be in certain soluble conditions, however, and the soluble bicarbonate of the protoxide of chalybeate springs seems most favourable, the hydrocarbonate absorbed by the cells is oxidized, probably thus—

2FeCO3 + 3OH2 + O = Fe2(OH)6 + 2CO2.

The ferric hydroxide accumulates in the sheath, and gradually passes into the more insoluble ferric oxide. These actions are of extreme importance in nature, as their continuation results in the enormous deposits of bog-iron ore, ochre, and—since Molisch has shown that the iron can be replaced by manganese in some bacteria—of manganese ores.

Considerable advances in our knowledge of the various chromogenic Pigment bacteria. bacteria have been made by the studies of Beyerinck, Lankester, Engelmann, Ewart and others, and have assumed exceptional importance owing to the discovery that Bacteriopurpurin—the red colouring matter contained in certain sulphur bacteria—absorbs certain rays of solar energy, and enables the organism to utilize the energy for its own life-purposes. Engelmann showed, for instance, that these red-purple bacteria collect in the ultra-red, and to a less extent in the orange and green, in bands which agree with the absorption spectrum of the extracted colouring matter. Not only so, but the evident parallelism between this absorption of light and that by the chlorophyll of green plants, is completed by the demonstration that oxygen is set free by these bacteria—i.e. by means of radiant energy trapped by their colour-screens the living cells are in both cases enabled to do work, such as the reduction of highly oxidized compounds.

The most recent observations of Molisch seem to show that bacteria possessing bacteriopurpurin exhibit a new type of assimilation—the assimilation of organic material under the influence of light. In the case of these red-purple bacteria the colouring matter is contained in the protoplasm of the cell, but in most chromogenic bacteria it occurs as excreted pigment on and between the cells, or is formed by their action in the medium. Ewart has confirmed the principal conclusions concerning these purple, and also the so-called chlorophyll bacteria (B. viride, B. chlorinum, &c.), the results going to show that these are, as many authorities have held, merely minute algae. The pigment itself may be soluble in water, as is the case with the blue-green fluorescent body formed by B. pyocyaneus, B. fluorescens and a whole group of fluorescent bacteria. Neelson found that the pigment of B. cyanogenus gives a band in the yellow and strong lines at E and F in the solar spectrum—an absorption spectrum almost identical with that of triphenyl-rosaniline. In the case of the scarlet and crimson red pigments of B. prodigiosus, B. ruber, &c., the violet of B. violacens, B janthinus, &c., the red-purple of the sulphur bacteria, and indeed most bacterial pigments, solution in water does not occur, though alcohol extracts the colour readily. Finally, there are a few forms which yield their colour to neither alcohol nor water, e.g. the yellow Micrococcus cereus flavus and the B. berolinensis. Much work is still necessary before we can estimate the importance of these pigments. Their spectra are only imperfectly known in a few cases, and the bearing of the absorption on the life-history is still a mystery. In many cases the colour-production is dependent on certain definite conditions—temperature, presence of oxygen, nature of the food-medium, &c. Ewart's important discovery that some of these lipochrome pigments occlude oxygen, while others do not, may have bearings on the facultative anaerobism of these organisms.

A branch of bacteriology which offers numerous problems of Dairy bacteria. importance is that which deals with the organisms so common in milk, butter and cheese. Milk is a medium not only admirably suited to the growth of bacteria, but, as a matter of fact, always contaminated with these organisms in the ordinary course of supply. F. Lafar has stated that 20% of the cows in Germany suffer from tuberculosis, which also affected 17.7% of the cattle slaughtered in Copenhagen between 1891 and 1893, and that one in every thirteen samples of milk examined in Paris, and one in every nineteen in Washington, contained tubercle bacilli. Hence the desirability of sterilizing milk used for domestic purposes becomes imperative.