Fig. 16.—Exterior, W.B.C. Hive.
Fig. 17.—Interior, W.B.C. Hive.

Figs. 16 and 17 explain its construction and, as will be seen, it is equally suitable when working for comb or for extracted honey.

Various causes have contributed to the development of the modern hive, the most important of which are the improvements in methods of extracting honey from combs, and in the manufacture of comb-foundation. Regarding the first of these, it cannot be said that the honey extractor, even in its latest form, differs very much from the original machine (fig. 18) invented by Major Hruschka, an officer in the Italian army, who in later life became an enthusiastic apiculturist. Honey extractors. Hruschka’s extractor, first brought to public notice in 1865, may be said to have revolutionized the bee-industry as a business. It enabled the honey producer to increase his output considerably by extracting honey from the cells in most cleanly fashion without damaging the combs, and in a fraction of the time previously occupied in the draining, heating and squeezing process. At the same time the combs were preserved for refilling by the bees, in lieu of melting them down for wax. The principle of the honey extractor (throwing the liquid honey out of the cells by centrifugal force) was discovered quite by accident. Major Hruschka’s little son chanced to have in his hand a bit of unsealed comb-honey in a basket to which was attached a piece of string, and, as the boy playfully whirled the basket round in the air, his father noticed a few drops of honey, thrown out of the comb by the centrifugal force employed to keep the basket suspended. The value of the idea at once struck him, he set to work on utilizing the principle involved, and ere long had constructed a machine admirably adapted to serve its purpose. Since that time changes, of more or less value, have been introduced to meet present-day requirements. One of the first to take advantage of Hruschka’s invention was Mr A. I. Root, who in 1869 perfected a machine on similar lines to the Hruschka one but embodying various improvements. This appliance, known as the “Novice Honey Extractor,” became very popular in the United States of America, but it had the fault of wasting time in removing the combs for reversing after one side had been emptied of its contents. A simple form of machine for extracting honey by centrifugal force was brought to notice in England in 1875, and was soon improved upon, as will be seen in fig. 19, which shows a section of one of the best English machines at that time. Various plans were tried in America to improve on the “Novice” machine, and Mr T.W. Cowan, who was experimenting in the same direction in England, invented in the year 1875 a machine called the “Rapid,” in which, the combs were reversed without removal of the cages (fig. 20). The frame-cases—wired on both sides—are hung at the angles of a revolving ring of iron, and the reversing process is so simple and effective that the “Cowan” reversible frame has been adopted in all the best machines both in Great Britain and in America.

Fig. 18.—Hruschka Extractor.Fig. 19.—Diagram of the Raynor Extractor.
Redrawn from The A B C of Bee Culture, published by the A. I. Root Co, Medina, Ohio, U.S.A.) A, Section of extractor.  fr, Fixing rail  ffr, Frame for cage.  wb, Metal webbing.  wn, Wire netting.  co, Comb  w, Wire bottom.  p, Pivot.  c, Stiffening cone.  cb, Coned bottom.  gt, Gutter.  st, Syrup tap. C, Perpendicular section of side of cage enlarged.  oc, Outer casing  wb, Metal webbing  wn, Wire netting
(From Cheshire’s Bees and Bee keeping, Scientific and Practical.)

The latest form of honey extractor used in America is that known as the “Four-frame Cowan.” Fig. 21 shows the working part or inside of the appliance. In this, and indeed in all extractors used in large apiaries, the “Cowan” or reversible frame principle is used. Each of the four cages in which the combs are placed is swung on a pivot attached to the side, and when the outer faces of the combs are emptied the cages are reversed without removal from the machine for emptying the opposite sides of combs. The further development of the honey extractor has of late been limited to an increase in the size of machine used, in order to save time and manual labour, and thus meet the requirements of the largest honey producers, who extract honey by the car load. Some of the largest machines—propelled by motor power—are capable of taking eight or more frames at one time. It may also be claimed for the honey extractor that it does away with the objection entertained by many persons to the use of honey, by enabling the apiarist to remove his produce from the honey-combs in its purest form untainted by crushed brood and untouched by hand.

Fig. 20.—Cowan’s rapid Extractor.
Fig. 21.—Cowan’s four-frame Extractor; interior.
(Redrawn from The A B C of Bee Culture, published by the A. I. Root Co, Medina, Ohio, U.S.A.)

Next in importance, to bee-keepers, is the enormous advance made in late years through the invention of a machine for manufacturing the impressed wax sheets known as “comb foundation,” aptly so named, because upon Comb foundation. it the bees build the cells wherein they store their food. We need not dwell upon the evolution from the crude idea, which first took form in the endeavour to compel bees to build straight combs in a given direction by offering them a guiding line of wax along the under side of each top-bar of the frame in which the combs were built; but we may glance at the more important improvements which gradually developed as time went on. In 1843 a German bee-keeper, Krechner by name, conceived the idea of first dipping fine linen into molten wax, then pressing the sheets so made between rollers, and thus forming a waxen midrib on which the bees would build their combs. This experiment was partially successful, but the instinctive dislike of bees to anything of a fibrous nature caused them completely to spoil their work of comb-building in the endeavour to tear or gnaw away the linen threads whenever they got in touch with them. In 1857 Mehring (also a German) made a further advance by the use of wooden moulds for casting sheets of wax impressed with the hexagonal form of the bee-cell. These sheets were readily accepted by the bees, and afterwards plates cast from metal were employed, with so good a result as to give to the bees as perfect a midrib as that of natural comb with the deep cell walls cut away. Fig. 22 shows a portion of one of these metal plates with worker-cells of natural size, i.e. five cells to the inch. Thus Mehring is justly claimed as the originator of comb-foundation, though the value of his invention was less eagerly taken advantage of even in Germany than its merits deserved. Probably it was ahead of the times, for not until nearly twenty years later was any prominence given to it, when Samuel Wagner, founder and editor of the American Bee Journal, became impressed with Mehring’s invention and warmly advocated it in his paper. Mr Wagner first conceived the idea of adding slightly raised side walls to the hexagonal outlines of the cells, by means of which the bees are supplied with the material for building out one-half or more of the complete cell walls or sides. The manifest advantage of this was at once realized by practical American apiarists as saving labour to the bees and money to the bee-keeper. One of the first to recognize its value was Mr A I. Root, of Medina, Ohio, who suggested the substitution of embossed rollers in lieu of flat plates, in order to increase the output of foundation and lessen its cost to the bee-keeper. He lost no time in giving practical shape to his views, and mainly through the inventive genius of a skilled machinist (Mr A. Washburn) the A. I. Root Co. constructed a roller press (fig 23) for producing foundation in sheets. This form of machine came into extensive use in the United States of America and afterwards in Great Britain. The first roller press was made by the A.I. Root Co. and imported by Mr William Raitt, a Scottish bee-keeper of repute in Perthshire, N.B. In all roller machines used at that time the plain sheets of wax were first made by the “dipping” process, i.e. by repeated dippings of damped boards in molten wax (kept in liquid condition in tanks immersed in hot water) until the sheet was of suitable thickness for the purpose. The prepared sheets were then passed through the rollers, and after being cut out and trimmed were ready for use.

Fig. 22.—Portion of a type-metal plate—i.e. form of Comb Midrib (five cells to the inch).
(From Cheshire’s Bees and Bee-keeping Scientific and Practical.)

Owing to the enormous demand for comb-foundation at that time various devices were tried with the view of securing (1) more rapid production, and (2) a foundation thin enough to be used in surplus chambers when working for comb-honey intended for table use. Foremost among the able men who experimented in this latter direction was Mr F.B. Weed, a skilful American machinist, who, after some years of strenuous effort, succeeded in devising and perfecting special rollers and dies, by the use of which foundation was produced with a midrib so thin as to compare favourably with natural comb built by the bees. “Dipping,” however, proved not only a stumbling-block to speed but to the production of continuous sheets of wax; and in the end Mr Weed, acting in concert with Mr A.I. Root (who placed the resources of his enormous factory at his disposal), devised and perfected machinery—driven by motor power—for manufacturing foundation by what is known as the “Weed” process. By this process “dipping” is abolished, and in its latest form sheets of wax of any length are produced, passed between engraved rollers 6 in in diameter, cut to given lengths, trimmed, counted and paper-tissued ready for packing, at a rate of speed previously undreamt of.

Fig. 23.—Foundation Machine.
(From Cheshire’s Bees and Bee-keeping, Scientific and Practical.)