II. Jean Bernoulli (1667-1748), brother of the preceding, was born at Basel on the 27th of July 1667. After finishing his literary studies he was sent to Neuchâtel to learn commerce and acquire the French language. But at the end of a year he renounced the pursuits of commerce, returned to the university of Basel, and was admitted to the degree of bachelor in philosophy, and a year later, at the age of 18, to that of master of arts. In his studies he was aided by his elder brother Jacques. Chemistry, as well as mathematics, seems to have been the object of his early attention; and in the year 1690 he published a dissertation on effervescence and fermentation. The same year he went to Geneva, where he gave instruction in the differential calculus to Nicolas Fatio de Duillier, and afterwards proceeded to Paris, where he enjoyed the society of N. Malebranche, J.D. Cassini, Philip de Lahire and Pierre Varignon. With the marquis de l’Hôpital he spent four months studying higher geometry and the resources of the new calculus. His independent discoveries in mathematics are numerous and important. Among these were the exponential calculus, and the curve called by him the linea brachistochrona, or line of swiftest descent, which he was the first to determine, pointing out at the same time the relation which this curve bears to the path described by a ray of light passing through strata of variable density. On his return to his native city he studied medicine, and in 1694 took the degree of M.D. Although he had declined a professorship in Germany, he now accepted an invitation to the chair of mathematics at Groningen (Commercium Philosophicum, epist. xi. and xii.). There, in addition to the learned lectures by which he endeavoured to revive mathematical science in the university, he gave a public course of experimental physics. During a residence of ten years in Groningen, his controversies were almost as numerous as his discoveries. His dissertation on the “barometric light,” first observed by Jean Picard, and discussed by Jean Bernoulli under the name of mercurial phosphorus, or mercury shining in vacuo (Diss. physica de mercurio lucente in vacuo), procured him the notice of royalty, and engaged him in controversy. Through the influence of Leibnitz he received from the king of Prussia a gold medal for his supposed discoveries; but Nicolaus Hartsoeker and some of the French academicians disputed the fact. The family quarrel about the problem of isoperimetrical figures above mentioned began about this time. In his dispute with his brother, in his controversies with the English and Scottish mathematicians, and in his harsh and jealous bearing to his son Daniel, he showed a mean, unfair and violent temper. He had declined, during his residence at Groningen, an invitation to Utrecht, but accepted in 1705 the mathematical chair in the university of his native city, vacant by the death of his brother Jacques; and here he remained till his death. His inaugural discourse was on the “new analysis,” which he so successfully applied in investigating various problems both in pure and applied mathematics.

He was several times a successful competitor for the prizes given by the Academy of Sciences of Paris; the subjects of his essays being:—the laws of motion (Discours sur les lois de la communication du mouvement, 1727), the elliptical orbits of the planets, and the inclinations of the planetary orbits (Essai d’une nouvelle physique céleste, 1735). In the last case his son Daniel divided the prize with him. Some years after his return to Basel he published an essay, entitled Nouvelle Théorie de la manœuvre des vaisseaux. It is, however, his works in pure mathematics that are the permanent monuments of his fame. Jean le Rond d’Alembert acknowledges with gratitude, that “whatever he knew of mathematics he owed to the works of Jean Bernoulli.” He was a member of almost every learned society in Europe, and one of the first mathematicians of a mathematical age. He was as keen in his resentments as he was ardent in his friendships; fondly attached to his family, he yet disliked a deserving son; he gave full praise to Leibnitz and Leonhard Euler, yet was blind to the excellence of Sir Isaac Newton. Such was the vigour of his constitution that he continued to pursue his usual mathematical studies till the age of eighty. He was then attacked by a complaint at first apparently trifling; but his strength daily and rapidly declined till the 1st of January 1748, when he died peacefully in his sleep.

His writings were collected under his own eye by Gabriel Cramer, professor of mathematics at Geneva, and published under the title of Johannis Bernoulli Operi Omnia (Lausan. et Genev.), 4 tom. 4to; his interesting correspondence with Leibnitz appeared under the title of Gul. Leibnitii et Johannis Bernoulli Commercium Philosophicum et Mathematicum (Lausan. et Genev. 1745), 2 tom. 4to.

III. Nicolas Bernoulli (1695-1726), the eldest of the three sons of Jean Bernoulli, was born on the 27th of January 1695. At the age of eight he could speak German, Dutch, French and Latin. When his father returned to Basel he went to the university of that city, where, at the age of sixteen, he took the degree of doctor in philosophy, and four years later the highest degree in law. Meanwhile the study of mathematics was not neglected, as appears not only from his giving instruction in geometry to his younger brother Daniel, but from his writings on the differential, integral, and exponential calculus, and from his father considering him, at the age of twenty-one, worthy of receiving the torch of science from his own hands. (“Lampada nunc tradam filio meo natu maximo, juveni xxi. annorum, ingenio mathematico aliisque dotibus satis instructo,” Com. Phil. ep. 223.) With his father’s permission he visited Italy and France, and during his travels formed friendship with Pierre Varignon and Count Riccati. The invitation of a Venetian nobleman induced him again to visit Italy, where he resided two years, till his return to be a candidate for the chair of jurisprudence at Basel. He was unsuccessful, but was soon afterwards appointed to a similar office in the university of Bern. Here he resided three years, his happiness only marred by regret on account of his separation from his brother Daniel. Both were appointed at the same time professors of mathematics in the academy of St Petersburg; but this office Nicolas enjoyed for little more then eight months. He died on the 26th of July 1726 of a lingering fever. Sensible of the loss which the nation had sustained by his death, the empress Catherine ordered him a funeral at the public expense.

Some of his papers are published in his father’s works, and others in the Acta Eruditorum and the Comment. Acad. Petropol.

IV. Daniel Bernoulli (1700-1782), the second son of Jean Bernoulli, was born on the 29th of January 1700, at Groningen. He studied medicine and became a physician, but his attention was early directed also to geometrical studies. The severity of his father’s manner was ill-calculated to encourage the first efforts of one so sensitive; but fortunately, at the age of eleven, he became the pupil of his brother Nicolas. He afterwards studied in Italy under Francesco Domenico Michelotti and Giambattista Morgagni. After his return, though only twenty-four years of age, he was invited to become president of an academy then projected at Genoa; but, declining this honour, he was, in the following year, appointed professor of mathematics at St Petersburg. In consequence of the state of his health, however, he returned to Basel in 1733, where he was appointed professor of anatomy and botany, and afterwards of experimental and speculative philosophy. In the labours of this office he spent the remaining years of his life. He had previously published some medical and botanical dissertations, besides his Exercitationes quaedam Mathematicae, containing a solution of the differential equation proposed by Riccati and now known by his name. In 1738 appeared his Hydrodynamica, in which the equilibrium, the pressure, the reaction and varied velocities of fluids are considered both theoretically and practically. One of these problems, illustrated by experiment, deals with an ingenious mode of propelling vessels by the reaction of water ejected from the stern. Some of his experiments on this subject were performed before Pierre Louis M. de Maupertuis and Alexis Claude Clairaut, whom the fame of the Bernoullis had attracted to Basel. With a success equalled only by Leonhard Euler, Daniel Bernoulli gained or shared no less than ten prizes of the Academy of Sciences of Paris. The first, for a memoir on the construction of a clepsydra for measuring time exactly at sea, he gained at the age of twenty-four; the second, for one on the physical cause of the inclination of the planetary orbits, he divided with his father; and the third, for a communication on the tides, he shared with Euler, Colin Maclaurin and another competitor. The problem of vibrating cords, which had been some time before resolved by Brook Taylor (1685-1731) and d’Alembert, became the subject of a long discussion conducted in a generous spirit between Bernoulli and his friend Euler. In one of his early investigations he gave an ingenious though indirect demonstration of the problem of the parallelogram of forces. His labours in the decline of life were chiefly directed to the doctrine of probabilities in reference to practical purposes, and in particular to economical subjects, as, for example, to inoculation, and to the duration of married life in the two sexes, as well as to the relative proportion of male and female births. He retained his usual vigour of understanding till near the age of eighty, when his nephew Jacques relieved him of his public duties. He was afflicted with asthma, and his retirement was relieved only by the society of a few chosen friends. He died on the 17th of March 1782 at Basel. Excluded by his professional character from the councils of the republic, he nevertheless received all the deference and honour due to a first magistrate. He was wont to mention the following as the two incidents in his life which had afforded him the greatest pleasure,—that a stranger, whom he had met as a travelling companion in his youth, made to his declaration “I am Daniel Bernoulli” the incredulous and mocking reply, “And I am Isaac Newton”; and that, while entertaining König and other guests, he solved without rising from table a problem which that mathematician had submitted as difficult and lengthy. Like his father, he was a member of almost every learned society of Europe, and he succeeded him as foreign associate of the Academy of Paris.

Several of his investigations are contained in the earlier volumes of the Comment. Acad. Petropol.; and his separately published works are:—Dissertatio Inaugur. Phys. Med. de Respiratione (Basil. 1721), 4to; Positiones Anatomico-Botanicae (Basil. 1721), 4to; Exercitationes quaedam Mathematicae (Venetiis, 1724), 4to; Hydrodynamica (Argentorati, 1738), 4to.

V. Jean Bernoulli (1710-1790), the youngest of the three sons of Jean Bernoulli, was born at Basel on the 18th of May 1710. He studied law and mathematics, and, after travelling in France, was for five years professor of eloquence in the university of his native city. On the death of his father he succeeded him as professor of mathematics. He was thrice a successful competitor for the prizes of the Academy of Sciences of Paris. His prize subjects were, the capstan, the propagation of light, and the magnet. He enjoyed the friendship of P.L.M. de Maupertuis, who died under his roof while on his way to Berlin. He himself died in 1790. His two sons, Jean and Jacques, are the last noted mathematicians of the family.

VI. Nicolas Bernoulli (1687-1759), cousin of the three preceding, and son of Nicolas Bernoulli, one of the senators of Basel, was born in that city on the 10th of October 1687. He visited England, where he was kindly received by Sir Isaac Newton and Edmund Halley (Com. Phil. ep. 199), held for a time the mathematical chair at Padua, and was successively professor of logic and of law at Basel, where he died on the 29th of November 1759. He was editor of the Ars Conjectandi of his uncle Jacques. His own works are contained in the Acta Eruditorum, the Giornale de’ letterati d’ Italia, and the Commercium Philosophicum.