In the ostrich, Struthio, the craze of overloading the stomach with pebbles which, when triturated into sand, are not voided, has brought about a dislocation, so that the enormously widened and stretched space between proventriculus and gizzard forms a bag, directed downwards, whilst the gizzard itself with part of the duodenum is rotated round its axis to more than 100°. A similar rotation and dislocation occurs in various petrels, in correlation with the indigestible sepia-bills, &c., which these birds swallow in great quantities. In Plotus, the snakebird, the pyloric chamber of the stomach is beset with a mass of hair-like stiff filaments which permit nothing but fluid to pass into the duodenum. The gizzard of various birds which are addicted to eating hairy caterpillars, e.g. Cuculus canorus and trogons, is often lined with the broken-off hairs of these caterpillars, which, penetrating the cuticle, assume a regular spiral arrangement, due to the rotatory motion of the muscles of the gizzard.
8. Cloaca and Genital Organs.
The cloaca is divided by transverse circular folds, which project from its inner walls, into three successive chambers. The innermost, the coprodaeum, is an oval dilatation of the end of the rectum, and attains its greatest size in those birds whose faeces are very fluid; it serves entirely as the temporary receptacle of the faeces and the urine. The next chamber, the urodaeum, is small, and receives in its dorso-lateral wall the ureters and the genital ducts; above and below this chamber is closed by circular folds, the lower of which, towards the ventral side, passes into the coating of the copulatory organ when such is present. The urodaeum serves only as a passage, the urine being mixed with the faeces in the chamber above. The third or outermost chamber, the proctodaeum, is closed externally by the sphincter ani; the orifice is quite circular. It lodges the copulatory organ, and on its dorsal wall lies the bursa Fabricii, an organ peculiar to birds. It is most developed in the young of both sexes, is of unknown function, and becomes more or less obliterated in the adult. Only in the ostrich it remains throughout life, being specialized into a large receptacle for the urine, an absolutely unique arrangement. A true urinary bladder, i.e. a ventral dilatation of the urodaeum, is absent in all birds. It is significant that the whole type of their cloaca much resembles that of the Crocodilia and Chelonia, in opposition to that of the Lacertilia.
The penis, and its much reduced vestige of the female, is developed from the ventral wall of the proctodaeum. It occurs in two different forms. In the Ratitae, except Rhea, it consists mainly of a right and left united half (corpora fibrosa), with a deep longitudinal furrow on the dorsal side, and much resembles the same organ in crocodiles and tortoises. It is protruded and retracted by special muscles which are partly attached to the ventral, distal end of the ilium. Another type exists in Rhea and in the Anseriformes, greatly specialized by being spirally twisted and partly reversible like the finger of a glove. This is mainly due to the greater development of an unpaired, median portion, analogous to the mammalian corpus spongiosum, which is much less prominent in the Ratitae; the muscles of this type are derived solely from the anal sphincter. In other Carinatae, e.g. tinamous and storks, the penis is very much smaller and simpler, with every appearance of a degenerated organ. In the great majority of birds it has disappeared completely and the primitive way of everting the cloaca is resorted to.
Both right and left testes are functional. They become greatly enlarged in the breeding season; in the sparrow, for instance, from the size of a mustard seed to that of a small cherry. The vas deferens descends with many undulations down the lateral side of the ureter of the same side, and opens upon a small papilla into the urodaeum. Extraordinary increase in length during the breeding season causes the vasa deferentia in some of the African weaver-birds to protrude, or to bulge out the cloacal walls beyond the vent. The spermatozoa exhibit many differences in shape, size and proportions, in the various groups of birds. They have been studied minutely by E. Ballowitz.
Only the left ovary becomes functional, with rare individual exceptions. Both present the appearance of diminutive clusters of grapes, at the anterior end of the kidneys, close to the suprarenal bodies, separated from each other by the descending aorta and by the vena cava where this is formed by the right and left vena iliaca communis. During the breeding season many more eggs are developed than reach maturity, amounting in most birds to several dozens. Those germs which do not ripen during the season undergo a process of resorption, and in the winter the whole ovary dwindles to often a diminutive size. In young birds both oviducts are almost equal in size, but the right soon degenerates into an insignificant strand. During every laying season the left duct increases enormously by new formation of its component fibres. For instance, in the fowl its volume increases about fifty-fold, growing from some 6 in. in length and scarcely one line in width to more than 2 ft. in length and ½ in. in thickness. The upper, wide opening of the duct is attached by elastic, peritoneal lamellae to the hinder margin of the left lung; the middle portion of the duct is glandular and thick-walled, for the deposition of the albumen; it is connected by a short, constricted “isthmus” (where the shell-membrane is formed) with a dilated “uterus” in which the egg receives its calcareous shell and eventual pigmentation.
Bibliography.—A. v. Brunn, Rückbildung nicht ausgestossener Eierstockseier, Henle Festschrift (Bonn, 1882); E. Ballowitz, “Die Spermatozoen der Vögel,” Arch. Mikr. Anat. xxxii., 1888, pls. 14-18; M. Sacchi, “Contribuzione all’ istiologia del ovidotto dei saurop-sidi,” Att. Soc. Ital., Milano, vol. xxx.; W.A. Forbes, “On the Bursa Fabricii in Birds,” P.Z.S., 1877, pp. 304-318; H. Gadow, “Remarks on the Cloaca and on the Copulatory Organs of the Amniota.” Phil. Trans., 1887, pp. 5-37, pls. 2-5; Martin Saint Ange, “Étude de l’appareil reproducteur dans les cinq classes d’animaux vertébres,” Mem. Ac. Soc., Paris, xiv., 1856; E. Retterer, “Contribution à l’étude du cloaque et de la bourse de Fabricius,” Robin’s Journ. de l’anat. et physiol., 1885, pp. 369-454, pls. 17-19.
B. Fossil Birds
Much had naturally been expected from the study of fossil birds, but, so far as the making of classifications is concerned, they have proved rather a source of perplexities. So long as the characters of new fossils are only of specific and generic value, it is mostly possible to assign the birds to their proper place, but when these characters indicate new families or orders, for instance Hesperornithes, Ichthyornithes, Palaelodi, their owners are put outside the more tersely constructed classifications applicable to modern birds. It is no exaggeration to say that the genus, often even the species, can be determined from almost any recent bone, but in the case of Miocene, and still more, of Eocene fossils, we have often to deal with strange families, which either represent an extinct side branch, or which connect several recent groups with each other. Our artificially-established classifications collapse whilst we gain further insight into the mutual affinities of the existing groups. Of course this must be so if evolution is true. But it also follows that, if every extinct and recent bird were known, neither species, nor genera, nor families, nor orders could be defined. We should be able to construct the pedigree of every group, in other words, the gigantic natural system, but there would be no classification. Much light has also been thrown by fossil birds upon the study of geographical distribution. The key to the distribution of recent groups lies in that of the extinct forms. Not only have many absolutely new families been discovered, but many kinds of modern birds are now known to have existed also in countries which they are now extinct. There were, for instance, trogons, secretary-birds, parrots, and other now Ethiopian forms in Miocene France. Ostriches, undistinguishable from Struthio, have been found in Samos and in the Sivalik Hills.
The proper study of fossil birds may be said to have begun with A. Milne-Edwards, whose magnificent Oiseaux fossiles de la France was published from 1867 to 1871. This work deals chiefly with mid-Tertiary forms. A new impetus was given by O.C. Marsh, who, after 1870, discovered a great number of bird remains in the Cretaceous strata of North America. The most important result is the proof that, until the end of the Cretaceous epoch, most, if not all, birds were still possessed of teeth (see [Odontornithes]).