Fig. 1.—Westinghouse Air-Brake.
Section through Triple-Valve and Brake-Cylinder.

In the Westinghouse “ordinary” automatic air-brake a main air reservoir on the engine is kept charged with compressed air at 80 ℔ per sq. in. by means of the steam-pump, which may be controlled by an automatic governor. On electric Automatic air-brake. railways a pump, driven by an electric motor, is generally employed; but occasionally, on trains which run short distances, no pump is carried, the main reservoir being charged at the terminal points with sufficient compressed air for the journey. Conveniently placed to the driver’s hand is the driver’s valve, by means of which he controls the flow of air from the main reservoir to the train-pipe, or from the train-pipe to the atmosphere. A reducing-valve is attached to the driver’s valve, and in the normal or running position of the latter reduces the pressure of the air flowing from the main reservoir to the train-pipe by 10 or 15 ℔ per sq. in. From the engine a train-pipe runs the whole length of the train, being rendered continuous between each vehicle and between the engine and the rest of the train by flexible hose couplings. Each vehicle is provided with a brake-cylinder H (fig. 1), containing a piston, the movement of which applies the brake blocks to the wheels, an “auxiliary air-reservoir” G, and an automatic “triple-valve” F. The auxiliary reservoir receives compressed air from the train-pipe and stores it for use in the brake-cylinder of its own vehicle, and both the auxiliary reservoir and the triple-valve are connected directly or indirectly with the train-pipe through the pipe E. The automatic action of the brake is due to the construction of the triple-valve, the principal parts of which are a piston and slide-valve, so arranged that the air in the auxiliary reservoir acts at all times on the side of the piston to which the slide-valve is attached, while the air in the train-pipe exerts its pressure on the opposite side. So long as the brakes are not in operation, the pressures in the train-pipe, triple-valve and auxiliary reservoir are all equal, and there is no compressed air in the brake-cylinder. But when, in order to apply the brake, the driver discharges air from the train-pipe, this equilibrium is destroyed, and the greater pressure in the auxiliary reservoir forces the triple-valve to a position which allows air from the auxiliary reservoir to pass directly into the brake-cylinder. This air forces out the piston of the brake-cylinder and applies the brakes, connexion being made with the brake-rigging at R. The purpose of the small groove n which establishes communication between the two sides of the piston when the brakes are off, is to prevent their unintended application through slight leakage from the train-pipe. To release the brakes, the driver, by moving the handle of his valve to the release position, admits air from the main reservoir to the train-pipe, the pressure in which thus becomes greater than that in the auxiliary reservoir; the piston and slide-valve of the triple-valve are thereby forced back to their normal position, the compressed air in the brake-cylinder is discharged, and the piston is brought back by the coiled spring, thus releasing the brakes. At the same time the auxiliary reservoir is recharged.

With this “ordinary” brake, since an appreciable time is required for the reduction of pressure to travel along the train-pipe from the engine, the brakes are applied sensibly sooner at the front than at the end of the train, and with long trains this Quick-acting air-brake. difference in the time of application becomes a matter of importance. The “quick-acting” brake was introduced to remedy this defect. For it the triple valve is provided with a supplementary mechanism, which, when the air pressure in the train-pipe is suddenly or violently reduced, opens a passage whereby air from the train-pipe is permitted to enter the brake-cylinder directly. The result is twofold: not only is the pressure from the auxiliary reservoir acting in the brake-cylinder reinforced by the pressure in the train-pipe, but the pressure in the train-pipe is reduced locally in every vehicle in extremely rapid succession instead of at the engine only, and in consequence all the brakes are applied almost simultaneously throughout the train. The same effect is produced should the train break in two, or a hose or any part of the train-pipe burst; but during ordinary or “service” stops the triple-valve acts exactly as in the ordinary brake, the quick-acting portion, that is, the vertical piston and valve seen in fig. 1, not coming into operation. When the handle Z is turned to the position X the quick-acting mechanism is rendered inoperative, and when it is at Y the brake on the vehicle concerned is wholly cut out of action.

A further improvement introduced in the Westinghouse brake in 1906 was designed to give quick action for service as well as emergency stops. In this the triple-valve is substantially the same as in the ordinary brake. The additional mechanism of the quick-acting portion is dispensed with, but instead, a small chamber, normally containing air at atmospheric pressure, is provided on each vehicle, and is so arranged that it is put into communication with the train-pipe by the first movement of the triple-valve. As soon, therefore, as the driver, by lowering the pressure in the train-pipe, causes the triple-valve in the foremost vehicle of the train to operate, a certain quantity of air rushes out of the train-pipe into the small chamber; a further local reduction in the pressure of the train-pipe in that vehicle is thereby effected, and this almost instantaneously actuates the triple-valve of the succeeding vehicle, and so on throughout the train. In this way, on a train 1800 ft. long, consisting of sixty 30-ft. vehicles, the brake-blocks may be applied, with equal force, on the last vehicle about 2½ seconds later than on the first.

Brake-blocks can be applied, without skidding the wheels, with greater pressure at high speeds than at low. Advantage is taken of this fact in the design of the Westinghouse “high-speed” brake, invented in 1894, which consists of High-speed air-brake. attachments enabling the pressure in the train-pipe and reservoirs to be increased at the will of the driver. The increased pressure acting in the brake-cylinder increases in the same proportion the pressure of the brake-shoes against the wheels. Attached to the brake cylinder is a valve for automatically reducing the pressure therein proportionately to the reduction in speed, until the maximum pressure under which the brakes are operated in making ordinary stops is reached, when this valve closes and the maximum safe pressure for operating the brakes at ordinary speeds is retained until a stop is made.

Fig. 2—Automatic Vacuum-Brake, showing its general arrangement.

In the automatic vacuum-brake, the exhausting apparatus generally consists of a combined large and small ejector (a form of jet-pump) worked by steam and under the control of the driver, though sometimes a mechanical air-pump, driven Automatic Vacuum-Brake. from the crosshead of the locomotive, is substituted for the small ejector. These ejectors, of which the small one is at work continuously while the large one is only employed when it is necessary to create vacuum quickly, e.g. to take off the brakes after a short stop, produce in the train-pipe a vacuum equal to about 20 in. of mercury, or in other words reduce the pressure within it to about one-third of an atmosphere. The train-pipe extends the whole length of the train and communicates under each vehicle with a cylinder, to the piston of which, by suitable rods and levers, the brake-shoes are connected. The communication between the train-pipe and the cylinder is controlled by a ball-valve, one form of which is shown in fig. 2. The release-valve is for the purpose of withdrawing the ball from its seat when it is necessary to take off the brakes by hand; it is made air-tight by a small diaphragm, the pressure of which, when there is vacuum in the pipe, pulls in the spindle and allows the ball to fall freely into its seat. When air is exhausted through the train-pipe it travels out from below the piston direct, and from above it past the ball, which is thus forced off its seat, to roll back again when the exhaustion is complete. In this state of affairs the piston is held in equilibrium and the brake-blocks are free of the wheels. To apply them, air is admitted to the train-pipe, either purposely by the guard or driver, or accidentally by the rupture of the train-pipe or coupling-hose between the vehicles. The air passes to the lower side of the piston, but is prevented from gaining access to the upper side by the ball-valve which blocks the passage; hence the pressure becomes different on the two sides of the piston, which in consequence is forced upwards and thus applies the brakes. They are released by the re-establishment of equilibrium (by the use of the large ejector if necessary); when this is done the piston falls and the brakes drop off. The general arrangement of the apparatus is shown in fig. 2. To render the application of the brakes nearly simultaneous throughout a long train, the valve in the guard’s van is arranged to open automatically when the driver suddenly lets in air to the train-pipe. This valve has a small hole through its stem, and is secured at the top by a diaphragm to a small dome-like chamber, which is exhausted when a vacuum is created in the train-pipe. A gradual application destroys the vacuum in the chamber as quickly as in the pipe and the diaphragm remains unmoved; but with a sudden one the vacuum below the valve is destroyed more quickly, and with the difference of pressure the diaphragm lifts the valve and admits air. A rapid-acting valve (fig. 3) is sometimes interposed between the train-pipe and the cylinder on each vehicle. In the normal or running position, a vacuum is maintained below the valve A and above the diaphragm B, while the chamber below B and above A is at atmospheric pressure. For an emergency application of the brake, air is suddenly admitted to the train-pipe and thus to the lower side of A, and the pressure acting on the under side of B is sufficient to cause it to lift the valve A, and to admit air from the atmosphere, both to the brake-cylinder and the train-pipe, through the clappet-valve D, which also rises because of the difference of pressure on its two sides. In a graduated application, neither D nor A rises from its seat, but air from the train-pipe finds access to the brake-cylinder by passing around the peg C, which is so proportioned as to allow the necessary amount of air to enter the brake-cylinder, and so obtain simultaneous action of the brake throughout the train. When the handle E is turned so as to prevent the clappet D from rising, the rapid action is cut out and the brake acts as an ordinary vacuum automatic brake. A modification of the device for obtaining accelerated action, described above in connexion with the Westinghouse brake, is also applicable. Accelerating chambers, again containing air at atmospheric pressure, are provided on each vehicle and are connected with the train-pipe by valves which open as the vacuum in the latter begins to decrease with the operation of the driver’s valve. The air thus admitted into the train-pipe effects a still further local reduction of the vacuum, which is sufficient to actuate the accelerating valve of each next succeeding vehicle and is thus rapidly propagated throughout the train.

Famous tests of railway brakes were those made by Sir Douglas Galton and Mr George Westinghouse on the London, Brighton and South Coast railway, in England, in 1878, and by a committee of the Master Car Builders’ Association, Brake trials. near Burlington, Iowa, in 1886 and 1887. The object of the former series (for accounts of which see Proc. Inst. Mech. Eng., 1878, 1879) was to determine the co-efficient of friction between the brake-shoe and the wheel, and between the wheel and rail at different velocities when the wheels were revolving and when skidded, i.e. stopped in their rotation and caused to slide. These experiments were the first of their kind ever undertaken, and for many years their results furnished most of the trustworthy data obtainable on the friction of motion. It was found that the co-efficient of friction between cast-iron shoes and steel-tired wheels increased as the speed of the train decreased, varying from 0.111 at 55 m. an hour to 0.33 when the train was just moving. It also decreased with the time during which the brakes were applied; thus at 20 m. an hour the co-efficient was at the beginning 0.182, after ten seconds 0.133, after twenty seconds 0.099. Generally speaking, especially at moderate speeds, the decrease in the co-efficient of friction due to time is less than the increase due to decrease of speed, although when the time is long the reverse may be true. When the wheels are skidded the retardation of the train is always reduced; therefore, for the greatest braking effect, the pressures on the brake-shoes should never be sufficient to cause the wheels to slide on the rails. The Burlington brake tests were undertaken to determine the practicability of using power brakes on long and heavy freight trains. In the 1886 tests there were five competitors—three buffer-brakes, one compressed-air brake, and one vacuum-brake. The tests comprised stops with trains of twenty-five and fifty vehicles, at 20 and 40 m. an hour, on the level and on gradients of 1 in 100. They demonstrated that the buffer-brakes were inadequate for long trains, and that considerable improvements in the continuous brakes, both compressed-air and vacuum, would be needed to make them act quickly enough to avoid excessive shocks in the rear vehicles. In 1887 the trials of the year before were repeated by the same committee, and at the same place. Trains of fifty vehicles, about 2000 ft. long and fitted with each brake, were again provided, and there were again five competitors, but they all entered continuous brakes—three compressed-air brakes, one vacuum and one electric. The results of the first day’s test of the train equipped with Westinghouse brakes are shown in Table I., the distances in which are the feet run by the train after the brakes were set, and the times the seconds that elapsed from the application of the brakes to full stop.

Fig. 3—Rapid-acting Vacuum-Brake Valve.

Table I.—Stops of a Train of Fifty Empty Cars, 1887Automatic Air-Brakes.