Methods of dough-making differ in different countries, and even in different parts of the same land. In the off hand method the dough is made right off, without any preliminary stages of ferment or sponge. This plan is sometimes Methods of making dough. adopted for making tin bread, and occasionally for crusty loaves. For tin bread a strong flour would be used and made into a slack dough, and about 1½ ℔ to 2 ℔ of distillers’ yeast would be used for the sack (280 ℔) of flour, occasionally with the addition of a little brewers’ yeast. Salt is used in the proportion of 3 ℔ to 3½ ℔ per sack. Formerly also it was the custom to add 10-14 ℔ of boiled potatoes, but the use of potatoes has greatly decreased. A tin-bread dough would be made slack, with about 70 quarts of water to the sack, and after being mixed, would be fermented at a temperature of 76-80° Fahr. It should lie for about ten hours. A dough for crusty bread such as cottage loaves, would be made much tighter, not more than 60 quarts of water being allowed to the sack. It would be fermented at a higher temperature, and would not lie more than about six hours. A slack dough is much less laborious to work (when the dough is hand-made) than a tight dough, for which a mechanical kneader is very suitable, but as a matter of fact the use of machinery (see below) is still the exception, not the rule. When a stiff dough is made by hand, it is usually made somewhat slack to begin with, and then “cut back” and “dusted” at regular intervals, that is to say, more and more flour is added till a dough of the required consistency has been obtained. (In the British baker’s vocabulary “dust” means flour, and good dust stands for good flour.) This system, on the one hand, saves the labour involved for “sponging” and other operations, and the bread is produced in less time; but on the other hand more yeast is used, and bakers generally hold that the system sacrifices the colour and texture of the loaf to convenience of working and yield. The high porportion of yeast enables the dough to carry a large quantity of water, and about 104 4-℔ loaves to the sack is said by Jago to be a not unusual yield in the case of slack doughs. But such a result would only be possible with very strong flour. In an ordinary way 96 loaves to the sack is a very high yield, unattainable except with strong flour, and probably the average yield is not more than 90 loaves to the sack. In London the manager of a “tied” shop is usually held to account for 92 loaves to the sack.
In the ferment and dough system, the ferment usually consists of 10 to 14 ℔ of potatoes to the sack of flour, boiled or steamed, and mashed with water, so as to yield about 3 gallons of liquor. There are several substitutes for potatoes, including raw and scalded flour, malt, malt extracts, &c.; brewers’ or distillers’ yeast may also be used. A ferment should contain saccharine matters and yeast stimulants in such a form as to favour the growth and reproduction of yeast in a vigorous condition. Hence it should not be too concentrated. About six hours are required for its preparation. It is added, together with 2 to 3 ℔ of salt, to the dough, which is prepared with about 56 quarts of water to the sack, and worked at a temperature of 80-84° Fahr. The dough is allowed to lie from two to five hours according to the flour used, the character of the ferment, and the working temperature. In this system the proportion of strong flour is usually reduced to 40% of the dough, and no doubt in some cases only soft or weak flours are used. Naturally the yield of bread is not so high as in the case of an off hand dough made entirely from strong flour, and it will probably not exceed 90 loaves to the sack. This method has many advantages. After the ferment is made the labour required is not much greater than with the off hand doughs, and less yeast is required, while potatoes, which are somewhat troublesome, from the necessary cleaning, can be replaced by the substitutes already mentioned. The method produces good-looking and palatable bread, though the loaves should be eaten within some twelve hours of leaving the oven.
The sponge and dough system, which is probably in widest use in England, is adapted to almost every kind of bread, and has the advantage that any kind of flour can be employed. The stronger flours which need long fermentation can be and usually are used in the “sponge” stage, while soft flours are utilized in the dough. (The sponge is a certain proportion, varying from a quarter to one-half, of the flour necessary for making the batch.) In London the baker often uses for the sponge a bag (140 ℔) of American spring wheat flour, and for the dough a sack (280 ℔) of British milled flour, which, whether it be country flour milled largely from English wheat or London milled, is always softer and weaker than that used for the sponge. The sponge is made very slack, 26 to 32 quarts of water being used to say 100 ℔ of flour. Yeast, either distillers’ or brewers’, must be added, in proportions varying according to its character and strength. Of distillers’ yeast 6 to 10 oz. may be used for 280 ℔ of flour (including sponge and dough). Salt is added to the sponge sparingly, at the rate of about ½ ℔ to the sack of 280 ℔ The object of making the sponge so slack is to quicken the fermentation. When set the sponge is allowed to ferment from six to ten hours, according to temperature and other conditions. Sometimes all the water it is intended to use is put into the sponge, which is then known as a “batter” sponge. The sponge, when ready, is incorporated with the rest of the flour to which the necessary amount of water and salt is added. The whole mass is then doughed up into the requisite consistency, the dough being allowed to lie for about two hours. Bread made by this method, always assuming that over-fermentation has been avoided, is of good appearance, presenting a bold loaf, with even texture and a nice sheen. Owing to the use of soft flours, the flavour should be agreeable, and the loaves ought to keep much longer than bread made by ferment and dough. The yield may rise as high as 96 loaves per sack, if strong flour has been used in the sponge.
A combination of the above two methods, known as the ferment, sponge and dough system, is often used with brewers’ yeast. In this case the yeast is not added to the sponge direct, but goes into the ferment. This method is rather in favour with bakers who make their own yeast.
The system of bread-making generally used in Scotland is known as the flour barm, sponge and dough. The barm is a combination of a malt and hop yeast, with a slow, scalded flour ferment. To make the so-called “virgin” barm a Scottish baker would use a 30-gallon tub; a smaller vessel for malt-mashing; 10 ℔ malt; 3 oz. hops and a jar for infusing them; 40 lb flour; 2 to 3 oz. malt; 8 to 12 oz. sugar, and 18 gallons of boiling water. With these materials a powerful ferment is produced, which it is considered best to use in the sponge the fourth or fifth day after brewing. The sponges used in Scotland are “half” or “quarter.” About 6 ℔ of malt go to the sack, one-sixth going into the sponge. As in England, strong flours are used for the sponge, but rather stronger flours are used for the dough than is usual in England. Scottish loaves are largely of the “brick” type, high and narrow. Such bread has an attractive appearance and keeps well. It has a rather sharp flavour, approaching acidity but avoiding sourness, while the large quantity of malt used adds a characteristic taste. The yield rises in some Glasgow bread factories to 100 loaves to the sack.
In many parts of Europe bread is still made from leaven, which, properly speaking, consists of a portion of dough held over from the previous baking. This substance, known to French bakers as levain, is called in Germany Leavened bread. Sauerteig (anglice “sour dough”). The lump of old dough, placed aside in a uniform temperature for some eight hours, swells and acquires an alcoholic odour, becoming the levain de chef of the French bakers. It is then worked up with flour and water to a firm paste double its original volume, when it becomes the levain de première. Six hours later, by the addition of more flour and water its amount is again doubled, though its consistency is made rather softer, and it becomes the levain de seconde. Finally, by another addition of flour and water, the amount is again doubled, and the levain de tous points is obtained. This mass is divided into two parts; one is baked yielding rather dark sour bread, while the other is mixed with more flour and water. This second portion is in turn halved, part is baked, and part again mixed with more flour, this last batch yielding the best and whitest bread. In North Germany leaven is generally used for making rye bread, and loaves baked from a mixture of wheat and rye flour. In the bakery of the Krupp works at Essen, each batch of the so-called Paderborn bread is prepared entirely with leaven from 270 kilos of rye flour (patent quality), 100 of wheat flour (seconds), 2 of buckwheat meal, 6 of salt, 5 of leaven, and one litre of oil. In Vienna leaven is never used for making the rolls and small goods for which that city is famous. Viennese bakers use either brewers’ yeast or a ferment, prepared by themselves, of which the basis is an infusion of hops. Brewers’ yeast is added to the ferment, which takes the form of a very slack dough. With 100 kilos (220.46 ℔) of flour about 17 litres or nearly 2 gallons of ferment are used.
In the original Dauglish process for the manufacture of aerated bread, which was brought into operation in Great Britain in 1859, carbonic acid gas was evolved in a generating vessel by the action of sulphuric acid on chalk, and after purification was Aerated bread. forced at high pressure into water, which was then used for doughing the flour. In this process the flour that had to be made into bread was submitted to the action of the super-aerated water by direct transference. It was found, however, in practice that much difficulty occurred in making the gas admix readily with the flour and water, great pressure being required, and to lessen the difficulties a new process, called the “wine whey,” was introduced. To carry this out, a vat placed on the upper storey of the factory is charged with a portion of malt and flour, which is mashed and allowed to ferment until a weak and slightly acid thin wine is produced; this after passing through the coolers is stored until it is transformed into a vinous whey. This whey is then introduced into a strong cylinder partly filled with water, and is aerated by letting in the gas (now stored in a highly compressed form in bottles), the pressure required being only a quarter of that necessary with the original method. The flour having been placed in the mixers, which are of globular form containing revolving arms, the aerated fluid is admitted, and in a short period the flour and fluid are completely incorporated. By means of an ingenious appliance termed a dough cock, the exact amount of dough for a single loaf of bread is forced out under the pressure of the gas, and by reversing the lever the dough, which expands as it falls into a baking tin, is cut off. Two sacks of flour can be converted with ease into 400 2-lb loaves in forty minutes, whereas the ordinary baker’s process would require about ten hours. At first a difficulty was encountered in the fact that the dough became discoloured by the action of the “wine whey” on the iron, but it was overcome by Killingworth Hedges, who discovered a non-poisonous vitreous enamel for coating the interior of the mixers, &c. It has been claimed for the Dauglish process that it saves the baker risks attendant on the production of carbon dioxide by the ordinary process of fermentation, in that he is no longer liable to have his dough spoilt by variations of temperature and other incalculable factors, the results being certain and uniform. A further claim is the saving of the proportion of starch consumed by conversion into glucose during the process of fermentation. The original objection, that, by the absence of fermentation, those subtle changes which help to produce flavour are lost, is annulled by the use of the wine whey process. The Dauglish process is well suited for producing small goods, such as cakes and scones, where flavour can be artificially imparted by means of currants, flavouring essences, &c. An undoubted advantage of the aerating process of bread-making is adaptability for utilizing flour with unstable gluten, which can thus be made into an excellent quality of bread. For wholemeal bread, too, there is probably no more suitable process than the Dauglish. The strong diastasic action of the cerealin, inevitable in fermentation, is entirely avoided. The Aerated Bread Company have about a hundred depots in London, which are supplied from a central factory.
The essence of the bread-making process recently invented by Serge Apostolov is the combination of a flour mill and bakery. The wheat, after a preliminary cleaning, is ground into flour by a mill composed of metal disks dressed, that Apostolov process. is furrowed, very much like the surfaces of a pair of mill-stones. The disks are not set to grind very close, because it is desired, by minimizing friction, to keep the meal cool. From the middlings obtained by this milling process about 10% of bran is separated, and the remainder of the middlings is treated by a peculiar process, akin to mashing, termed “lixiviation.” The middlings are saturated with tepid water containing a small proportion of yeast, which causes a certain amount of fermentation. It is claimed that by this process a solution is obtained of the floury constituents of the middlings. From the vats the solution is poured on an inclined sieve which has a gentle reciprocating motion. The floury particles pass through the meshes, while the bran tails over the sieve; the proportion of the wheat berry thus rejected is given as about 2½%. On the other hand, the milky-looking solution, called “lactus,” is caught in a special vessel, and delivered by a shoot into a trough, which may be either a mechanical kneader of an ordinary trough. This lactus takes the place of the ordinary sponge. The flour is added in the proportion necessary to make the required batch and the whole mass is doughed, either by hand or power. The resultant dough is moulded in the ordinary way into loaves, which are baked in due course. The advantages claimed for the process are that it permits of the utilization in bread-making of about 87½% of the wheat berry, that the resultant bread is fairly white in colour and is agreeable in flavour, and that it is extremely simple and provides a ready and cheap means of flour-making.
Machine Bakeries.—Bread-baking, though one of the most important of human industries, was long carried out in a most primitive manner, and machinery is still practically unknown in the bulk of British bakehouses. The reasons for this apparently anomalous condition of things are not very far to seek. Bread, unlike biscuits, is a food quite unfitted for long storage, and must be consumed within a comparatively short time of being drawn from the oven. Hence the bread-baker’s output is necessarily limited to a greater or lesser degree. This will be the more apparent when it is considered that the cost of distributing bread is high relatively to the profits to be realized. A baker’s bread trade is therefore usually limited to local requirements, and trading on a small scale he has less inducement to lay out capital on the installation of machinery than other classes of manufacturers. But there are now many machine bakeries (known in Scotland as bread factories), both in London and in other parts of Great Britain, where the manufacture of bread is carried out more or less on a large scale. The evolution of the machine bakery has been slow, and the mechanical operations of the bakehouse were long limited to the mixing of the sponge and the kneading of the dough, but now the work of the bakery engineer extends over almost every operation of bread-making.
A bread-baking plant should be installed in a building of at least two storeys. The ground floor may be used for the shop, with possibly a bread-cooling and delivery room at the rear. The flour may be hoisted to an attic at the top of the building, or to the top floor; in any case there must be sufficient floor space to accommodate the flour sacks and bags. Underneath the floor of the flour store should be installed a flour sifter, a simple apparatus consisting essentially of a hopper through which the flour enters a cylinder with a spiral brush, by which it is thoroughly agitated previously to passing through one or more sieves placed under the brush. A sack of flour may be passed through this sifter in a couple of minutes, the operation freeing the flour from lumps and pieces of string or other foreign substances which may have found their way into the sack. The sifter may also be combined with a blender or mixer, so that the baker may by its means thoroughly blend different flours in any desired proportion. The operation of blending is usually effected by a revolving blade of suitable design or by a worm conveyor placed underneath the sieve or sleeve. From the sifter and blender the flour descends by a sleeve into the dough kneading machine on the floor below. But in cases where it is desired merely to sift and blend flour ready for future use, it may be received in a worm and elevated again to the storage floor by an ordinary belt and bucket elevator. The water required for doughing purposes is contained in an iron tank, fixed to the wall in convenient proximity to the dough kneader. This tank, known as a water attemperating and measuring tank, is provided with a gauge and thermometer, and from it the exact quantity of water needed for doughing can be rapidly drawn off at the desired temperature. The cold water supply may be let into the tank at the top, and the hot water supply at the bottom, the idea being that each supply shall permeate the whole mass by gravity, the hot water ascending and the cold descending. The chief types of dough kneader will be described subsequently, but here it should be noted that not only have machines been devised for cutting out the exact sizes of dough required for small goods, such as buns and tartlets, but that the operations of weighing and dividing dough for quartern and half-quartern loaves can also be neatly and economically effected by machinery. Further, at least two machines have been built which successfully mould loaves (of simple shape), and the problem of moulding household bread by machinery has certainly been solved, but whether delicate twists and other fancy shapes could be equally well moulded mechanically is less certain.