The outer portions of the main breakwaters at Genoa and at Naples (fig. 6), extending into depths of about 75 ft. and 110 ft. respectively, have been provided with superstructures, similar in type, but more solid than the superstructure at Marseilles; and the sorted rubble mounds upon which the superstructures rest are protected on the sea slope by stepped courses of concrete blocks from a depth of 26 ft. below sea-level, covered over at the top by a masonry apron forming a prolongation of the superstructure. The outer extension of the main breakwater at Civita Vecchia furnishes an interesting example of a composite form of breakwater, in which the rubble mound has been protected, and greatly reduced in volume and extent in deep water, by stepped courses of concrete blocks carried up from near the bottom of the mound (fig. 7).

The breakwaters in front of Havre, constructed in 1896-1907, for sheltering the altered entrance to the port, were formed of a sorted rubble mound, protected on the sea slope by concrete blocks, and raised a little above low water of spring tides, upon which large blocks of masonry, built on land, were deposited with their upper surfaces about 18 in. above low water of neap tides. As soon as settlement of the mound under the action of the sea appeared to have ceased, these masonry blocks were connected together by filling the spaces between them with masonry; and a solid masonry superstructure was built during low tide on this foundation layer, as shown in fig. 8.

Fig. 7.—Civita Vecchia Outer Breakwater.

The breakwaters constructed for forming harbours on the sea coast of the United States are almost all rubble-mound breakwaters. The two old detached breakwaters sheltering Delaware Harbour near the south-eastern extremity of Delaware Bay, were formed of simple rubble mounds raised about 13 ft. above low water; but in closing the gap between them towards the close of the 19th century, the rubble mound was stopped at low water, and a sort of superstructure, consisting of stepped courses of large rectangular blocks of stone on the sea and harbour sides, with tightly packed rubble between them and capped across the top for a width of 20 ft. with a course of large blocks, was raised to 14 ft. above low water, resembling, on a small scale, the upper part of the Civita Vecchia mound (fig. 7). A similar construction was adopted for the new breakwater formed in 1897-1901 for providing a harbour of refuge at the mouth of Delaware Bay; but in this instance the mound was made considerably wider at the top, and had to be protected along the toe of the superstructure on the sea side by large stones. The same form of superstructure, also, on a narrower base, was resorted to for a breakwater in deeper water at San Pedro in California with satisfactory results. When, however, a breakwater of the Delaware type was in progress for forming a harbour of refuge in Sandy Bay, Massachusetts, in front of Rockport to the north of Boston, the upper 13 ft. of the 600 ft. of completed superstructure were carried away during a severe storm in 1898 leaving only a portion about 5 ft. in height above low water, the average rise of tide there being 83⁄5 ft. The design was, accordingly, modified in 1902, by commencing the stepped courses of large stones at 12 ft. below mean low water on each slope, instead of at low water raising this kind of superstructure to 22 ft. above low water in place of 18 ft., and capping the stepped courses at the top by large blocks of stone, 20 ft. long and 5 ft. deep, laid across the breakwater, which thus presented a marked resemblance to the upper section of the mound at Civita Vecchia.

The breakwater at Sandy Bay just referred to, and the one at Civita Vecchia, which it somewhat resembles, approximate to that class of breakwater which has a superstructure founded below low-water level, so far as stepped courses of blocks Superstructure below low-water level. can be regarded as forming part of a superstructure; but as the protection afforded by these courses differs only in the arrangement of the blocks from that obtained by blocks deposited at random, it appears expedient to restrict this class to the more solid structures, resembling upright-wall breakwaters, founded on a mound at some depth below low water As the main object of this class of breakwater is to keep the mound below the zone of disturbance by waves in severe storms, it is evident that the depth at which the superstructure is founded should vary directly with the exposure of the site, and inversely with the size of the materials forming the mound.

Fig. 8.—Havre Breakwater.

The depth at which waves striking against a superstructure may affect a rubble mound near its toe by the recoil, has been only very gradually realized. Thus, in 1847, the Alderney breakwater, though fully exposed to the Atlantic Ocean, was begun with a superstructure founded at low water of spring tides upon a rubble mound; but within two years the foundations had to be carried down 12 it. below low water, and this was adhered to till close to the head, though the breakwater, completed in 1864, extended 4700 ft. from the shore into a depth of 130 ft. at low tide, the rise of springs being 17 ft. The great recoil of the waves in storms from the promenade wall on the sea side of the superstructure, raised 33 ft. above low water, disturbed the sea slope of the mound along the outer portion, situated in depths of 80 to 130 ft. at low water, out to a distance of 90 ft. from the superstructure and to a depth of 20 ft.; whilst the outer toe of the superstructure was only preserved from being undermined by frequent deposits of stone along the sea face.

The south-west breakwater at Colombo Harbour, constructed in 1876-1884, facing the seas raised by the south-west monsoon, extends into a depth of 39 ft. at low water, where the rise of tide is only 2 ft. at springs, and was built with a superstructure founded upon a rubble mound at a depth of 20 ft. below low water, but raised only 12 ft. above this level without any parapet, and protected along its sea face by an apron of concrete in bags. In this case, not only was the depth of the sea much less than at Alderney, but the small elevation of the superstructure above low water enabled a portion of the waves in storms to pass over it without materially impairing the shelter inside. These circumstances reduced the shock and recoil of the waves; and the greater depth of the foundations and the protection of the toe of the superstructure greatly diminished the danger of undermining. Consequently, the Colombo breakwater has been preserved from the injuries to which the outer part of the Alderney breakwater succumbed. Nevertheless, in subsequently constructing the north-west detached breakwater, less exposed to the south-west monsoon, but in somewhat deeper water (see [Colombo]), the experience of the action of the sea on the south-west breakwater led to the laying of the foundations of the superstructure on the rubble mound at 30¾ ft. below low water (fig. 9).

The breakwater for sheltering Peterhead Bay, where the rise of springs is 11¼ ft., was begun in 1888, and designed to extend into a depth of 9½ fathoms at low water (see [Harbour]). It was built as an upright wall upon the rocky bottom for 1000 ft. from the shore; but owing to the increase in depth it was decided to construct the outer portion with a rubble base, surmounted by a superstructure originally designed to be founded 30 ft. below low water. As, however, during a storm in October 1898, the recoil of the waves from the breakwater, which is provided with a promenade wall rising about 35 ft. above low water, disturbed rubble to a depth of 36½ ft., the superstructure has been founded 43 ft. below low water on the rubble base; and its outer toe is protected from being undermined by two rows of concrete blocks on the rubble mound.