Dr John Perry added log log scales to the ordinary slide rule in order to facilitate the calculation of ax or ex according to the formula log logax = log loga + logx. These rules are manufactured by A.G. Thornton of Manchester.

Many different forms of slide rules are now on the market. The handiest for general use is the Gravet rule made by Tavernier-Gravet in Paris, according to instructions of the mathematician V.M.A. Mannheim of the École Polytechnique in Paris. It contains at the back of the slide scales for the logarithms of sines and tangents so arranged that they can be worked with the scale on the front. An improved form is now made by Davis and Son of Derby, who engrave the scales on white celluloid instead of on box-wood, thus greatly facilitating the readings. These scales have the distance from one to ten about twice that in fig. 4. Tavernier-Gravet makes them of that size and longer, even ½ metre long. But they then become somewhat unwieldy, though they allow of reading to more figures. To get a handy long scale Professor G. Fuller has constructed a spiral slide rule drawn on a cylinder, which admits of reading to three and four figures. The handiest of all is perhaps the "Calculating Circle" by Boucher, made in the form of a watch. For various purposes special adaptations of the slide rules are met with—for instance, in various exposure meters for photographic purposes. General Strachey introduced slide rules into the Meteorological Office for performing special calculations. At some blast furnaces a slide rule has been used for determining the amount of coke and flux required for any weight of ore. Near the balance a large logarithmic scale is fixed with a slide which has three indices only. A load of ore is put on the scales, and the first index of the slide is put to the number giving the weight, when the second and third point to the weights of coke and flux required.

By placing a number of slides side by side, drawn if need be to different scales of length, more complicated calculations may be performed. It is then convenient to make the scales circular. A number of rings or disks are mounted side by side on a cylinder, each having on its rim a log-scale.

The "Callendar Cable Calculator," invented by Harold Hastings and manufactured by Robert W. Paul, is of this kind. In it a number of disks are mounted on a common shaft, on which each turns freely unless a button is pressed down whereby the disk is clamped to the shaft. Another disk is fixed to the shaft. In front of the disks lies a fixed zero line. Let all disks be set to zero and the shaft be turned, with the first disk clamped, till a desired number appears on the zero line; let then the first disk be released and the second clamped and so on; then the fixed disk will add up all the turnings and thus give the product of the numbers shown on the several disks. If the division on the disks is drawn to different scales, more or less complicated calculations may be rapidly performed. Thus if for some purpose the value of say ab³ √c is required for many different values of a, b, c, three movable disks would be needed with divisions drawn to scales of lengths in the proportion 1: 3: ½. The instrument now on sale contains six movable disks.

Continuous Calculating Machines or Integrators.—In order to measure the length of a curve, such as the road on a map, a Curvometers. wheel is rolled along it. For one revolution of the wheel the path described by its point of contact is equal to the circumference of the wheel. Thus, if a cyclist counts the number of revolutions of his front wheel he can calculate the distance ridden by multiplying that number by the circumference of the wheel. An ordinary cyclometer is nothing but an arrangement for counting these revolutions, but it is graduated in such a manner that it gives at once the distance in miles. On the same principle depend a number of instruments which, under various fancy names, serve to measure the length of any curve; they are in the shape of a small meter chiefly for the use of cyclists. They all have a small wheel which is rolled along the curve to be measured, and this sets a hand in motion which gives the reading on a dial. Their accuracy is not very great, because it is difficult to place the wheel so on the paper that the point of contact lies exactly over a given point; the beginning and end of the readings are therefore badly defined. Besides, it is not easy to guide the wheel along the curve to which it should always lie tangentially. To obviate this defect more complicated curvometers or kartometers have been devised. The handiest seems to be that of G. Coradi. He uses two wheels; the tracing-point, halfway between them, is guided along the curve, the line joining the wheels being kept normal to the curve. This is pretty easily done by eye; a constant deviation of 8° from this direction produces an error of only 1%. The sum of the two readings gives the length. E. Fleischhauer uses three, five or more wheels arranged symmetrically round a tracer whose point is guided along the curve; the planes of the wheels all pass through the tracer, and the wheels can only turn in one direction. The sum of the readings of all the wheels gives approximately the length of the curve, the approximation increasing with the number of the wheels used. It is stated that with three wheels practically useful results can be obtained, although in this case the error, if the instrument is consistently handled so as always to produce the greatest inaccuracy, may be as much as 5%.

Planimeters are instruments for the determination by mechanical means of the area of any figure. A pointer, generally called the Planimeters. "tracer," is guided round the boundary of the figure, and then the area is read off on the recording apparatus of the instrument. The simplest and most useful is Amsler's (fig. 5). It consists of two bars of metal OQ and QT,

which are hinged together at Q. At O is a needle-point which is driven into the drawing-board, and at T is the tracer. As this is guided round the boundary of the figure a wheel W mounted on QT rolls on the paper, and the turning of this wheel measures, to some known scale, the area. We shall give the theory of this instrument fully in an elementary manner by aid of geometry. The theory of other planimeters can then be easily understood.

Consider the rod QT with the wheel W, without the arm OQ. Let it be placed with the wheel on the paper, and now moved perpendicular to itself from AC to BD (fig. 6). The rod sweeps over, or generates, the area of the rectangle ACDB = lp, where l denotes the length of the rod and p the distance AB through which it has been moved. This distance, as measured by the rolling of the wheel, which acts as a curvometer, will be called the "roll" of the wheel and be denoted by w. In this case p = w, and the area P is given by P = wl. Let the circumference of the wheel be divided into say a hundred equal parts u; then w registers the number of u's rolled over, and w therefore gives the number of areas lu contained in the rectangle. By suitably selecting the radius of the wheel and the length l, this area lu may be any convenient unit, say a square inch or square centimetre. By changing l the unit will be changed.