In fact, if Y shall vanish for x = c, or if

Y = ∫cxydx,

then the axis of x has to be drawn through that point on the y-curve which corresponds to x = c.

In Coradi's integraph a rectangular frame F1F2F3F4 (fig. 22) rests with four rollers R on the drawing board, and can roll freely in the direction OX, which will be called the axis of the instrument. On the front edge F1F2 travels a carriage AA′ supported at A′ on another rail. A bar DB can turn about D, fixed to the frame in its axis, and slide through a point B fixed in the carriage AA′. Along it a block K can slide. On the back edge F3F4 of the frame another carriage C travels. It holds a vertical spindle with the knife-edge wheel at the bottom. At right angles to the plane of the wheel, the spindle has an arm GH, which is kept parallel to a

similar arm attached to K perpendicular to DB. The plane of the knife-edge wheel r is therefore always parallel to DB. If now the point B is made to follow a curve whose y is measured from OX, we have in the triangle BDB′, with the angle φ at D,

tan φ = y/a,

where a = DB′ is the constant base to which the instrument works. The point of contact of the wheel r or any point of the carriage C will therefore always move in a direction making an angle φ with the axis of x, whilst it moves in the x-direction through the same distance as the point B on the y-curve—that is to say, it will trace out the integral curve required, and so will any point rigidly connected with the carriage C. A pen P attached to this carriage will therefore draw the integral curve. Instead of moving B along the y-curve, a tracer T fixed to the carriage A is guided along it. For using the instrument the carriage is placed on the drawing-board with the front edge parallel to the axis of y, the carriage A being clamped in the central position with A at E and B at B′ on the axis of x. The tracer is then placed on the x-axis of the y-curve and clamped to the carriage, and the instrument is ready for use. As it is convenient to have the integral curve placed directly opposite to the y-curve so that corresponding values of y or Y are drawn on the same line, a pen P′ is fixed to C in a line with the tracer.

Boys' integraph was invented during a sleepless night, and during the following days carried out as a working model, which gives highly satisfactory results. It is ingenious in its simplicity, and a direct realization as a mechanism of the principles explained in connexion with fig. 21. The line B′B is represented by the edge of an ordinary T-square sliding against the edge of a drawing-board. The points B and P are connected by two rods BE and EP, jointed at E. At B, E and P are small pulleys of equal diameters. Over these an endless string runs, ensuring that the pulleys at B and P always turn through equal angles. The pulley at B is fixed to a rod which passes through the point D, which itself is fixed in the T-square. The pulley at P carries the knife-edge wheel. If then B and P are kept on the edge of the T-square, and B is guided along the curve, the wheel at P will roll along the Y-curve, it having been originally set parallel to BD. To give the wheel at P sufficient grip on the paper, a small loaded three-wheeled carriage, the knife-edge wheel P being one of its wheels, is added. If a piece of copying paper is inserted between the wheel P and the drawing paper the Y-curve is drawn very sharply.

Integraphs have also been constructed, by aid of which ordinary differential equations, especially linear ones, can be solved, the solution being given as a curve. The first suggestion in this direction was made by Lord Kelvin. So far no really useful instrument has been made, although the ideas seem sufficiently developed to enable a skilful instrument-maker to produce one should there be sufficient demand for it. Sometimes a combination of graphical work with an integraph will serve the purpose. This is the case if the variables are separated, hence if the equation