[9] Vieta, Opera math. (Leiden, 1646); Marie, Hist. des sciences math. iii. 27 seq. (Paris, 1884).
[10] Klügel, Math. Wörterb. ii. 606, 607.
[11] Kästner, Gesch. d. Math. i. (Göttingen, 1796-1800).
[12] But see Les Délices de Leide (Leiden, 1712); or de Haan, Mess. of Math. iii. 24-26.
[13] For minute and lengthy details regarding the quadrature of the circle in the Low Countries, see de Haan, “Bouwstoffen voor de geschiedenis, &c.,” in Versl. en Mededeel. der K. Akad. van Wetensch. ix., x., xi., xii. (Amsterdam); also his “Notice sur quelques quadrateurs, &c.,” in Bull. di bibliogr. e di storia delle sci. mat. e fis. vii. 99-144.
[14] It is thus manifest that by his first construction Snell gave an approximate solution of two great problems of antiquity.
[15] Elementa trigonometrica (Rome, 1630); Glaisher, Messenger of Math. iii. 35 seq.
[16] See Kiessling’s edition of the De Circ. Magn. Inv. (Flensburg, 1869); or Pirie’s tract on Geometrical Methods of Approx. to the Value of π (London, 1877).
[17] See Euler, “Annotationes in locum quendam Cartesii,” in Nov. Comm. Acad. Petrop. viii.
[18] Gergonne, Annales de math. vi.