The electrical conductivity of gases in the normal state is, as we have seen, exceedingly small, so small that the investigation of its properties is a matter of considerable difficulty; there are, however, many ways by which the electrical conductivity of a gas can be increased so greatly that the investigation becomes comparatively easy. Among such methods are raising the temperature of the gas above a certain point. Gases drawn from the neighbourhood of flames, electric arcs and sparks, or glowing pieces of metal or carbon are conductors, as are also gases through which Röntgen or cathode rays or rays of positive electricity are passing; the rays from the radioactive metals, radium, thorium, polonium and actinium, produce the same effect, as does also ultra-violet light of exceedingly short wave-length. The gas, after being made a conductor of electricity by any of these means, is found to possess certain properties; thus it retains its conductivity for some little time after the agent which made it a conductor has ceased to act, though the conductivity diminishes very rapidly and finally gets too small to be appreciable.

Fig. 5.

This and several other properties of conducting gas may readily be proved by the aid of the apparatus represented in fig. 5. V is a testing vessel in which an electroscope is placed. Two tubes A and C are fitted into the vessel, A being connected with a water pump, while the far end of C is in the region where the gas is exposed to the agent which makes it a conductor of electricity. Let us suppose that the gas is made conducting by Röntgen rays produced by a vacuum tube which is placed in a box, covered except for a window at B with lead so as to protect the electroscope from the direct action of the rays. If a slow current of air is drawn by the water pump through the testing vessel, the charge on the electroscope will gradually leak away. The leak, however, ceases when the current of air is stopped. This result shows that the gas retains its conductivity during the time taken by it to pass from one end to the other of the tube C.

The gas loses its conductivity when filtered through a plug of glass-wool, or when it is made to bubble through water. This can readily be proved by inserting in the tube C a plug of glass-wool or a water trap; then if by working the pump a little harder the same current of air is produced as before, it will be found that the electroscope will now retain its charge, showing that the conductivity can, as it were, be filtered out of the gas. The conductivity can also be removed from the gas by making the gas traverse a strong electric field. We can show this by replacing the tube C by a metal tube with an insulated wire passing down the axis of the tube. If there is no potential difference between the wire and the tube then the electroscope will leak when a current of air is drawn through the vessel, but the leak will stop if a considerable difference of potential is maintained between the wire and the tube: this shows that a strong electric field removes the conductivity from the gas.

The fact that the conductivity of the gas is removed by filtering shows that it is due to something mixed with the gas which is removed from it by filtration, and since the conductivity is also removed by an electric field, the cause of the conductivity must be charged with electricity so as to be driven to the sides of the tube by the electric force. Since the gas as a whole is not electrified either positively or negatively, there must be both negative and positive charges in the gas, the amount of electricity of one sign being equal to that of the other. We are thus led to the conclusion that the conductivity of the gas is due to electrified particles being mixed up with the gas, some of these particles having charges of positive electricity, others of negative. These electrified particles are called ions, and the process by which the gas is made a conductor is called the ionization of the gas. We shall show later that the charges and masses of the ions can be determined, and that the gaseous ions are not identical with those met with in the electrolysis of solutions.

Fig. 6.

One very characteristic property of conduction of electricity through a gas is the relation between the current through the gas and the electric force which gave rise to it. This relation is not in general that expressed by Ohm’s law, which always, as far as our present knowledge extends, expresses the relation for conduction through metals and electrolytes. With gases, on the other hand, it is only when the current is very small that Ohm’s law is true. If we represent graphically by means of a curve the relation between the current passing between two parallel metal plates separated by ionized gas and the difference of potential between the plates, the curve is of the character shown in fig. 6 when the ordinates represent the current and the abscissae the difference of potential between the plates. We see that when the potential difference is very small, i.e. close to the origin, the curve is approximately straight, but that soon the current increases much less rapidly than the potential difference, and that a stage is reached when no appreciable increase of current is produced when the potential difference is increased; when this stage is reached the current is constant, and this value of the current is called the “saturation” value. When the potential difference approaches the value at which sparks would pass through the gas, the current again increases with the potential difference; thus the curve representing the relation between the current and potential difference over very wide ranges of potential difference has the shape shown in fig. 7; curves of this kind have been obtained by von Schweidler (Wien. Ber., 1899, 108, p. 273), and J. E. S. Townsend (Phil. Mag., 1901 [6], 1, p. 198). We shall discuss later the causes of the rise in the current with large potential differences, when we consider ionization by collision.

The general features of the earlier part of the curve are readily explained on the ionization hypothesis. On this view the Röntgen rays or other ionizing agent acting on the gas between the plates, produces positive and negative ions at a definite rate. Let us suppose that q positive and q negative ions are by this means produced per second between the plates; these under the electric force will tend to move, the positive ones to the negative plate, the negative ones to the positive. Some of these ions will reach the plate, others before reaching the plate will get so near one of the opposite sign that the attraction between them will cause them to unite and form an electrically neutral system; when they do this they end their existence as ions. The current between the plates is proportional to the number of ions which reach the plates per second. Now it is evident that we cannot go on taking more ions out of the gas than are produced; thus we cannot, when the current is steady, have more than q positive ions driven to the negative plate per second, and the same number of negative ions to the positive. If each of the positive ions carries a charge of e units of positive electricity, and if there is an equal and opposite charge on each negative ion, then the maximum amount of electricity which can be given to the plates per second is qe, and this is equal to the saturation current. Thus if we measure the saturation current, we get a direct measure of the ionization, and this does not require us to know the value of any quantity except the constant charge on the ion. If we attempted to deduce the amount of ionization by measurements of the current before it was saturated, we should require to know in addition the velocity with which the ions move under a given electric force, the time that elapses between the liberation of an ion and its combination with one of the opposite sign, and the potential difference between the plates. Thus if we wish to measure the amount of ionization in a gas we should be careful to see that the current is saturated.

Fig. 7.

The difference between conduction through gases and through metals is shown in a striking way when we use potential differences large enough to produce the saturation current. Suppose we have got a potential difference between the plates more than sufficient to produce the saturation current, and let us increase the distance between the plates. If the gas were to act like a metallic conductor this would diminish the current, because the greater length would involve a greater resistance in the circuit. In the case we are considering the separation of the plates will increase the current, because now there is a larger volume of gas exposed to the rays; there are therefore more ions produced, and as the saturation current is proportional to the number of ions the saturation current is increased. If the potential difference between the plates were much less than that required to saturate the current, then increasing the distance would diminish the current; the gas for such potential differences obeys Ohm’s law and the behaviour of the gaseous resistance is therefore similar to that of a metallic one.