Xe = √ 2 · 9π√ μ3· v32(v1 − v) .
g ρ v

Thus if X, v, v1 are known e can be determined. Wilson by this method found that e was 3.1×10-10 electrostatic units. A few of the ions carried charges 2e or 3e.

Townsend has used the following method to compare the charge carried by a gaseous ion with that carried by an atom of hydrogen in the electrolysis of solution. We have

u/D = Ne/Π,

where D is the coefficient of diffusion of the ions through the gas, u the velocity of the ion in the same gas when acted on by unit electric force, N the number of molecules in a cubic centimetre of the gas when the pressure is Π dynes per square centimetre, and e the charge in electrostatic units. This relation is obtained on the hypothesis that N ions in a cubic centimetre produce the same pressure as N uncharged molecules.

We know the value of D from Townsend’s experiments and the values of u from those of Zeleny. We get the following values for Ne×10-10:—

Gas.Moist Gas. Moist Gas.
Positive
Ions.
Positive
Ions.
Positive
Ions.
Positive
Ions.
Air 1.28 1.29 1.46 1.31
Oxygen 1.34 1.27 1.63 1.36
Carbonic acid 1.01  .87  .99  .93
Hydrogen 1.24 1.18 1.63 1.25
Mean 1.22 1.15 1.43 1.21

Since 1.22 cubic centimetres of hydrogen at the temperature 15° C. and pressure 760 mm. of mercury are liberated by the passage through acidulated water of one electromagnetic unit of electricity or 3×1010 electrostatic units, and since in one cubic centimetre of the gas there are 2.46 N atoms of hydrogen, we have, if E is the charge in electrostatic units, on the atom of hydrogen in the electrolysis of solutions

2.46NE = 3×1010,