Hexakis-octahedron (fig. 24). Here each face of the octahedron is replaced by six scalene triangles, so that altogether there are forty-eight faces. This is the greatest number of faces possible for any simple form in crystals. The faces are all oblique to the planes and axes of symmetry, and they intercept the three crystallographic axes in different lengths, hence the indices are all unequal, being in general {hkl}, or in particular cases {321}, {421}, {432}, &c. Such a form is known as the “general form” of the class. The interfacial angles over the three edges of each triangle are all different. These forms usually exist only in combination with other cubic forms (for example, fig. 25), but {421} has been observed as a simple form on fluorspar.

Fig. 24.—Hexakis-octahedron.Fig. 25.—Combination of
Hexakis-octahedron and
Cube.

Several examples of substances which crystallize in this class have been mentioned above under the different forms; many others might be cited—for instance, the metals iron, copper, silver, gold, platinum, lead, mercury, and the non-metallic elements silicon and phosphorus.

Tetrahedral Class

(Tetrahedral-hemihedral; Hexakis-tetrahedral).

In this class there is no centre of symmetry nor cubic planes of symmetry; the three tetrad axes become dyad axes of symmetry, and the four triad axes are polar, i.e. they are associated with different faces at their two ends. The other elements of symmetry (six dodecahedral planes and six dyad axes) are the same as in the last class.

Fig. 26.—Tetrahedron.Fig. 27.—Deltoid Dodecahedron.

Of the seven simple forms, the cube, rhombic dodecahedron and tetrakis-hexahedron are geometrically the same as before, though on actual crystals the faces will have different surface characters. For instance, the cube faces will be striated parallel to only one of the diagonals (fig. 90), and etched figures on this face will be symmetrical with respect to two lines, instead of four as in the last class. The remaining simple forms have, however, only half the number of faces as the corresponding form in the last class, and are spoken of as “hemihedral with inclined faces.”

Fig. 28.—Triakis-tetrahedron.Fig. 29.—Hexakis-tetrahedron.

Tetrahedron (fig. 26). This is bounded by four equilateral triangles and is identical with the regular tetrahedron of geometry. The angles between the normals to the faces are 109° 28′. It may be derived from the octahedron by suppressing the alternate faces.