The theory of compound singularities will be referred to farther on.
In regard to the ordinary singularities, we have
| m, | the | order, |
| n | ” | class, |
| δ | ” | number of double points, |
| κ | ” | ” cusps, |
| τ | ” | ” double tangents, |
| ι | ” | ” inflections; |
and this being so, Plücker’s “six equations” are
| (1) | n = m (m − 1) − 2 δ − 3κ, |
| (2) | ι = 3m (m − 2) − 6δ − 8κ, |
| (3) | τ = ½m (m − 2) (m² − 9) − (m² − m − 6) (2δ + 3κ) + 2δ (δ − 1) + 6δκ + 9⁄2κ (κ − 1), |
| (4) | m = n (n − 1) − 2τ − 3ι, |
| (5) | κ = 3n (n − 2) − 6τ − 8ι, |
| (6) | δ = ½n (n − 2) (n² − 9) − (n² − n − 6) (2τ + 3ι) + 2τ (τ − 1) + 6τι + 9⁄2ι (ι − i). |
It is easy to derive the further forms—
| (7) | ι − κ | = 3 (n − m), |
| (8) | 2 (τ − δ) | = (n − m) (n + m − 9), |
| (9) | ½m (m + 3) − δ − 2κ | = ½n (n + 3) − τ − 2ι, |
| (10) | ½ (m − 1) (m − 2) − δ − κ | = ½ (n − 1) (n − 2) − τ − ι, |
| (11, 12) | m² − 2δ − 3κ | = n² − 2τ − 3ι, = m + n,— |
the whole system being equivalent to three equations only; and it may be added that using a to denote the equal quantities 3m + ι and 3n + κ everything may be expressed in terms of m, n, a. We have
| κ = a − 3n, ι = a − 3m, 2δ = m² − m + 8n − 3a. 2τ = n² − n + 8m − 3a. |