2x being the diameter of the disk. If 2r = 1000 cm., 2x = 1 cm., λ = 6 × 10-5 cm., then dx = .0015 cm. Hence, in order that this zone may be perfectly formed, there should be no error in the circumference of the order of .001 cm. (It is easy to see that the radius of the bright spot is of the same order of magnitude.) The experiment succeeds in a dark room of the length above mentioned, with a threepenny bit (supported by three threads) as obstacle, the origin of light being a small needle hole in a plate of tin, through which the sun’s rays shine horizontally after reflection from an external mirror. In the absence of a heliostat it is more convenient to obtain a point of light with the aid of a lens of short focus.

The amplitude of the light at any point in the axis, when plane waves are incident perpendicularly upon an annular aperture, is, as above,

cos k(at − r1) − cos k(at − r2) = 2 sin kat sin k(r1 − r2),

r2, r1 being the distances of the outer and inner boundaries from the point in question. It is scarcely necessary to remark that in all such cases the calculation applies in the first instance to homogeneous light, and that, in accordance with Fourier’s theorem, each homogeneous component of a mixture may be treated separately. When the original light is white, the presence of some components and the absence of others will usually give rise to coloured effects, variable with the precise circumstances of the case.

Fig. 2.

Although the matter can be fully treated only upon the basis of a dynamical theory, it is proper to point out at once that there is an element of assumption in the application of Huygens’s principle to the calculation of the effects produced by opaque screens of limited extent. Properly applied, the principle could not fail; but, as may readily be proved in the case of sonorous waves, it is not in strictness sufficient to assume the expression for a secondary wave suitable when the primary wave is undisturbed, with mere limitation of the integration to the transparent parts of the screen. But, except perhaps in the case of very fine gratings, it is probable that the error thus caused is insignificant; for the incorrect estimation of the secondary waves will be limited to distances of a few wave-lengths only from the boundary of opaque and transparent parts.

3. Fraunhofer’s Diffraction Phenomena.—A very general problem in diffraction is the investigation of the distribution of light over a screen upon which impinge divergent or convergent spherical waves after passage through various diffracting apertures. When the waves are convergent and the recipient screen is placed so as to contain the centre of convergency—the image of the original radiant point, the calculation assumes a less complicated form. This class of phenomena was investigated by J. von Fraunhofer (upon principles laid down by Fresnel), and are sometimes called after his name. We may conveniently commence with them on account of their simplicity and great importance in respect to the theory of optical instruments.

If ƒ be the radius of the spherical wave at the place of resolution, where the vibration is represented by cos kat, then at any point M (fig. 2) in the recipient screen the vibration due to an element dS of the wave-front is (§ 2)

dSsin k(at − ρ),
λρ

ρ being the distance between M and the element dS.