J0(z) = √( 2) cos(z-1/4π).
πz

The mean brightness varies as z-1; and the integral ∫∞0 J0²(z)z dz is not convergent.

5. Resolving Power of Telescopes.—The efficiency of a telescope is of course intimately connected with the size of the disk by which it represents a mathematical point. In estimating theoretically the resolving power on a double star we have to consider the illumination of the field due to the superposition of the two independent images. If the angular interval between the components of a double star were equal to twice that expressed in equation (15) above, the central disks of the diffraction patterns would be just in contact. Under these conditions there is no doubt that the star would appear to be fairly resolved, since the brightness of its external ring system is too small to produce any material confusion, unless indeed the components are of very unequal magnitude. The diminution of the star disks with increasing aperture was observed by Sir William Herschel, and in 1823 Fraunhofer formulated the law of inverse proportionality. In investigations extending over a long series of years, the advantage of a large aperture in separating the components of close double stars was fully examined by W. R. Dawes.

The resolving power of telescopes was investigated also by J. B. L. Foucault, who employed a scale of equal bright and dark alternate parts; it was found to be proportional to the aperture and independent of the focal length. In telescopes of the best construction and of moderate aperture the performance is not sensibly prejudiced by outstanding aberration, and the limit imposed by the finiteness of the waves of light is practically reached. M. E. Verdet has compared Foucault’s results with theory, and has drawn the conclusion that the radius of the visible part of the image of a luminous point was equal to half the radius of the first dark ring.

The application, unaccountably long delayed, of this principle to the microscope by H. L. F. Helmholtz in 1871 is the foundation of the important doctrine of the microscopic limit. It is true that in 1823 Fraunhofer, inspired by his observations upon gratings, had very nearly hit the mark.[3] And a little before Helmholtz, E. Abbe published a somewhat more complete investigation, also founded upon the phenomena presented by gratings. But although the argument from gratings is instructive and convenient in some respects, its use has tended to obscure the essential unity of the principle of the limit of resolution whether applied to telescopes or microscopes.

Fig. 4.

In fig. 4, AB represents the axis of an optical instrument (telescope or microscope), A being a point of the object and B a point of the image. By the operation of the object-glass LL′ all the rays issuing from A arrive in the same phase at B. Thus if A be self-luminous, the illumination is a maximum at B, where all the secondary waves agree in phase. B is in fact the centre of the diffraction disk which constitutes the image of A. At neighbouring points the illumination is less, in consequence of the discrepancies of phase which there enter. In like manner if we take a neighbouring point P, also self-luminous, in the plane of the object, the waves which issue from it will arrive at B with phases no longer absolutely concordant, and the discrepancy of phase will increase as the interval AP increases. When the interval is very small the discrepancy, though mathematically existent, produces no practical effect; and the illumination at B due to P is as important as that due to A, the intensities of the two luminous sources being supposed equal. Under these conditions it is clear that A and P are not separated in the image. The question is to what amount must the distance AP be increased in order that the difference of situation may make itself felt in the image. This is necessarily a question of degree; but it does not require detailed calculations in order to show that the discrepancy first becomes conspicuous when the phases corresponding to the various secondary waves which travel from P to B range over a complete period. The illumination at B due to P then becomes comparatively small, indeed for some forms of aperture evanescent. The extreme discrepancy is that between the waves which travel through the outermost parts of the object-glass at L and L′; so that if we adopt the above standard of resolution, the question is where must P be situated in order that the relative retardation of the rays PL and PL’ may on their arrival at B amount to a wave-length (λ). In virtue of the general law that the reduced optical path is stationary in value, this retardation may be calculated without allowance for the different paths pursued on the farther side of L, L′, so that the value is simply PL − PL′. Now since AP is very small, AL′ − PL′ = AP sin α, where α is the angular semi-aperture L′AB. In like manner PL − AL has the same value, so that

PL − PL′ = 2AP sin α.

According to the standard adopted, the condition of resolution is therefore that AP, or ε, should exceed ½λ/sin α. If ε be less than this, the images overlap too much; while if ε greatly exceed the above value the images become unnecessarily separated.

In the above argument the whole space between the object and the lens is supposed to be occupied by matter of one refractive index, and λ represents the wave-length in this medium of the kind of light employed. If the restriction as to uniformity be violated, what we have ultimately to deal with is the wave-length in the medium immediately surrounding the object.