No record has yet been found of any adequate reward for Diaz: on the contrary, when the great Indian expedition was being prepared (for Vasco da Gama’s future leadership) Bartolomeu only superintended the building and outfit of the ships; when the fleet sailed in 1497, he only accompanied da Gama to the Cape Verde Islands, and after this was ordered to El Mina on the Gold Coast. On Cabral’s voyage of 1500 he was indeed permitted to take part in the discovery of Brazil (April 22), and thence should have helped to guide the fleet to India; but he perished in a great storm off his own Cabo Tormentoso. Like Moses, as Galvano says, he was allowed to see the Promised Land, but not to enter in.
See João de Barros, Asia, Dec. I. bk. iii. ch. 4; Duarte Pacheco Pereira, Esmeraldo de situ orbis, esp. pp. 15, 90, 92, 94 and Raphael Bastos’s introduction to the edition of 1892 (Pacheco met Diaz, returning from his great voyage, at the Ilha do Principe); a marginal note, probably by Christopher Columbus himself, on fol. 13 of a copy of Pierre d’Ailly’s Imago mundi, now in the Colombina at Seville (the writer of this note fixes Diaz’s return to Lisbon, December 1488, and says he was present at Diaz’s interview with the king of Portugal, when the explorer described his voyage and showed his route upon the chart he had kept); a similar but briefer note in a copy of Pope Pius II.’s Historia rerum ubique gestarum, from the same hand; the Roteiro of Vasco da Gama’s First Voyage (Journal of the First Voyage of ... Da Gama, Hakluyt Soc., ed. E. G. Ravenstein (1898), pp. 9, 14); Ramusio, Navigationi (3rd ed.), vol. i. fol. 144; Castanheda, Historia, bk. i. ch. 1; Galvano, Descobrimentos (Discoveries of the World), Hakluyt Soc. (1862), p. 77; E. G. Ravenstein, “Voyages of ... Cão and ... Dias,” in Geog. Journ. (London, December 1900), vol. xvi. pp. 638-655), an excellent critical summary in the light of the most recent investigations of all the material. The fragments of Diaz’s only remaining pillar (from Diaz Point) are now partly at the Cape Museum, partly at Lisbon: the latter are photographed in Ravenstein’s paper in Geog. Journ. (December 1900, p. 642).
(C. R. B.)
DIAZO COMPOUNDS, in organic chemistry, compounds of the type R·N·2·X (where R = a hydrocarbon radical, and X = an acid radical or a hydroxyl group). These compounds may be divided into two classes, namely, the true diazo compounds, characterized by the grouping −N = N−, and the diazonium compounds, characterized by the grouping N ∶ N <.
The diazonium compounds were first discovered by P. Griess (Ann., 1858, 106, pp. 123 et seq.), and may be prepared by the action of nitrous fumes on a well-cooled solution of a salt of a primary amine,
C6H5NH2·HNO3 + HNO2 = C6H5N2·NO3 + 2H2O,
or, as is more usually the case (since the diazonium salts themselves are generally used only in aqueous solution) by the addition of a well-cooled solution of potassium or sodium nitrite to a well-cooled dilute acid solution of the primary amine. In order to isolate the anhydrous diazonium salts, the method of E. Knoevenagel (Ber., 1890, 23, p. 2094) may be employed. In this process the amine salt is dissolved in absolute alcohol and diazotized by the addition of amyl nitrite; a crystalline precipitate of the diazonium salt is formed on standing, or on the addition of a small quantity of ether. The diazonium salts are also formed by the action of zinc-dust and acids on the nitrates of primary amines (R. Mohlau, Ber., 1883, 16, p. 3080), and by the action of hydroxylamine on nitrosobenzenes. They are colourless crystalline solids which turn brown on exposure. They dissolve easily in water, but only to a slight extent in alcohol and ether. They are very unstable, exploding violently when heated or rubbed. Benzene diazonium nitrate, C6H5N(NO3)∶N, crystallizes in long silky needles. The sulphate and chloride are similar, but they are not quite so unstable as the nitrate. The bromide may be prepared by the addition of bromine to an ethereal solution of diazo-amino-benzene (tribromaniline remaining in solution). By the addition of potassium bromide and bromine water to diazonium salts they are converted into a perbromide, e.g. C6H5N2Br3, which crystallizes in yellow plates.
The diazonium salts are characterized by their great reactivity and consequently are important reagents in synthetical processes, since by their agency the amino group in a primary amine may be exchanged for other elements or radicals. The chief reactions are as follows:—
1. Replacement of -NH2 by -OH:—The amine is diazotized and the aqueous solution of the diazonium salt is heated, nitrogen being eliminated and a phenol formed.