In support of this theory, Hantzsch has succeeded in isolating a series of syn- and anti-diazo-cyanides and -sulphonates (Ber., 1895, 28, p. 666; 1900, 33, p. 2161; 1901, 34, p. 4166). By diazotizing para-chloraniline and adding a cold solution of potassium cyanide, a salt (melting at 29° C.) is obtained, which readily loses nitrogen, and forms para-chlorbenzonitrile on the addition of copper powder. By dissolving this diazocyanide in alcohol and reprecipitating it by water, it is converted into the isomeric diazocyanide (melting at 105-106° C.), which does not yield para-chlorbenzonitrile when treated with copper powder. Similar results have been obtained by using diazotized para-anisidine, a syn- and an anti- compound being formed, as well as a third isomeric cyanide, obtained by evaporating para-methoxy-benzenediazonium hydroxide in the presence of an excess of hydrocyanic acid at ordinary temperatures. This salt is a colourless crystalline substance of composition CH3O·C6H4·N2·CN·HCN·2H2O, and has the properties of a metallic salt; it is very soluble in water and its solution is an electrolyte, whereas the solutions of the syn- and anti- compounds are not electrolytes. The isolation of these compounds is a powerful argument in favour of the Hantzsch hypothesis which requires the existence of these three different types, whilst the Bamberger-Blomstrand view only accounts for the formation of two isomeric cyanides, namely, one of the normal diazonium type and one of the iso-diazocyanide type.

Benzene diazonium hydroxide, although a strong base, reacts with the alkaline hydroxides to form salts with the evolution of heat, and generally behaves as a weak acid. On mixing dilute solutions of the diazonium hydroxide and the alkali together, it is found that the molecular conductivity of the mixture is much less than the sum of the two electrical conductivities of the solutions separately, from which it follows that a portion of the ions present have changed to the non-ionized condition. This behaviour is explained by considering the non-ionized part of the diazonium hydroxide to exist in solution in a hydrated form, the equation of equilibrium being:

On adding the alkaline hydroxide to the solution, this hydrate is supposed to lose water, yielding the syn-diazo hydroxide, which then gives rise to a certain amount of the sodium salt (A. Hantzsch, Ber., 1898, 31, p. 1612),

This assumption also shows the relationship of the diazonium hydroxides to other quaternary ammonium compounds, for most of the quaternary ammonium hydroxides (except such as have the nitrogen atom attached to four saturated hydrocarbon radicals) are unstable, and readily pass over into compounds in which the hydroxyl group is no longer attached to the amine nitrogen; thus the syn-diazo hydroxides are to be regarded as pseudo-diazonium derivatives. (A. Hantzsch, Ber., 1899, 32, p. 3109; 1900, 33, p. 278.) It is generally accepted that the iso-diazo hydroxides possess the oxime structure R·N:N·OH.

Hantzsch explains the characteristic reactions of the diazonium compounds by the assumption that an addition compound is first formed, which breaks down with the elimination of the hydride of the acid radical, and the formation of an unstable syn-diazo compound, which, in its turn, decomposes with evolution of nitrogen (Ber., 1897, 30, p. 2548; 1898, 31, p. 2053).

J. Cain (Jour. Chem. Soc., 1907, 91, p. 1049) suggested a quinonoid formula for diazonium salts, which has been combated by Hantzsch (Ber., 1908, 41, pp. 3532 et seq.). G. T. Morgan and F. M. G. Micklethwaite (Jour. Chem. Soc., 1908, 93, p. 617; 1909, 95, p. 1319) have pointed out that the salts may possess a dynamic formula, Cain’s representing the middle stage, thus: