Similar food materials from different sources may also differ considerably in composition. This is especially true of meats. Thus, the leaner portions from a fat animal may contain nearly as much fat as the fatter portions from a lean animal. The data here presented are largely those for American food products, but the available analyses of English food materials indicate that the latter differ but little from the former in composition. The analyses of meats produced in Europe imply that they commonly contain somewhat less fat and more water, and often more protein, than American meats. The meats of English production compare with the American more than with the European meats. Similar vegetable foods from the different countries do not differ so much in composition.

4. Digestibility or Availability of Food Materials.—The value of any food material for nutriment depends not merely upon the kinds and amounts of nutrients it contains, but also upon the ease and convenience with which the nutrients may be digested, and especially upon the proportion of the nutrients that will be actually digested and absorbed. Thus, two foods may contain equal amounts of the same nutrient, but the one most easily digested will really be of most value to the body, because less effort is necessary to utilize it. Considerable study of this factor is being made, and much valuable information is accumulating, but it is of more especial importance in cases of disordered digestion.

The digestibility of food in the sense of thoroughness of digestion, however, is of particular importance in the present discussion. Only that portion of the food that is digested and absorbed is available to the body for the building of tissue and the production of energy. Not all the food eaten is thus actually digested; undigested material is excreted in the faeces. The thoroughness of digestion is determined experimentally by weighing and analysing the food eaten and the faeces pertaining to it. The difference between the corresponding ingredients of the two is commonly considered to represent the amounts of the ingredients digested. Expressed in percentages, these are called coefficients of digestibility. See Table II.

Table II.—Coefficients of Digestibility (or Availability) of Nutrients in Different Classes of Food Materials.

Kind of Food.Protein.Fat.Carbohydrates.
%%%
Meats9898· ·
Fish9697· ·
Poultry9697· ·
Eggs9798· ·
Dairy products979698
Total animal food of mixed diet979798
Potatoes73· ·98
Beets, carrots, &c.72· ·97
Cabbage, lettuce, &c.· ·· ·83
Legumes789095
Oatmeal789097
Corn meal80· ·99
Wheat meals without bran83· ·93
Wheat meals with bran75· ·92
White bread88· ·98
Entire wheat bread82· ·94
Graham bread76· ·90
Rice76· ·91
Fruits and nuts808696
Sugars and starches· ·· ·98
Total vegetable food of mixed diet859097
Total food of mixed diet929597

Such a method is not strictly accurate, because the faeces do not consist entirely of undigested food but contain in addition to this the so-called metabolic products, which include the residuum of digestive juices not resorbed, fragments of intestinal epithelium, &c. Since there is as yet no satisfactory method of separating these constituents of the excreta, the actual digestibility of the food is not determined. It has been suggested that since these materials must originally come from food, they represent, when expressed in terms of food ingredients, the cost of digestion; hence that the values determined as above explained represent the portion of food available to the body for the building of tissue and the yielding of energy, and what is commonly designated as digestibility should be called availability. Other writers retain the term “digestibility,” but express the results as “apparent digestibility,” until more knowledge regarding the metabolic products of the excreta is available and the actual digestibility may be ascertained.

Experimental inquiry of this nature has been very active in recent years, especially in Europe, the United States and Japan; and the results of considerably over 1000 digestion experiments with single foods or combinations of food materials are available. These were mostly with men, but some were with women and with children. The larger part of these have been taken into account in the following estimations of the digestibility of the nutrients in different classes of food materials. The figures here shown are subject to revision as experimental data accumulate. They are not to be taken as exact measures of the digestibility (or availability) of every kind of food in each given class, but they probably represent fairly well the average digestibility of the classes of food materials as ordinarily utilized in the mixed diet.

5. Fuel Value of Food.—The potential energy of food is commonly measured as the amount of heat evolved when the food is completely oxidized. In the laboratory this is determined by burning the food in oxygen in a calorimeter. The results, which are known as the heat of combustion of the food, are expressed in calories, one calory being the amount of heat necessary to raise the temperature of one kilogram of water one degree centigrade. But it is to be observed that this unit is employed simply from convenience, and without implication as to what extent the energy of food is converted into heat in the body. The unit employed in the measurement of some other form of energy might be used instead, as, for example, the foot-ton, which represents the amount of energy necessary to raise one ton through one foot.

Table III.—Estimates of Heats of Combustion and of Fuel Value of Nutrients in Ordinary Mixed Diet.

Nutrients.Heat of
Combustion.
Fuel Value.
Calories.Calories.
One gram of protein5.654.05
One gram of fats9.408.93
One gram of carbohydrates4.154.03