(W. F. Sh.)
DIFFERENTIAL EQUATION, in mathematics, a relation between one or more functions and their differential coefficients. The subject is treated here in two parts: (1) an elementary introduction dealing with the more commonly recognized types of differential equations which can be solved by rule; and (2) the general theory.
Part I.—Elementary Introduction.
Of equations involving only one independent variable, x (known as ordinary differential equations), and one dependent variable, y, and containing only the first differential coefficient dy/dx (and therefore said to be of the first order), the simplest form is that reducible to the type
dy/dx = ƒ(x)/F(y),
leading to the result ƒF(y)dy − ƒƒ(x)dx = A, where A is an arbitrary constant; this result is said to solve the differential equation, the problem of evaluating the integrals belonging to the integral calculus.
Another simple form is
dy/dx + yP = Q,