(H + Kx) cos x + (M + Nx) sin x,

where H, K, M, N are arbitrary constants. To obtain a particular integral we must find a value of (1 + D²)−²x³ cos x; this is the real part of (1 + D²)−² eixx³ and hence of eix [1 + (D + i)²]−² x³

or

eix [2iD(1 + ½iD)]−² x³,

or

−¼eix D−² (1 + iD − ¾D² − ½iD³ + 5⁄16D4 + 3⁄16iD5 ...)x³,

or

−¼eix (1⁄20x5 + ¼ix4 − ¾x³ − 3⁄2 ix² + 15⁄8 x + 9⁄8 i);

the real part of this is

−¼ (1⁄20 x5 − ¾x² + 15⁄8x) cos x + ¼ (¼x4 − 3⁄4x² + 9⁄8) sin x.