Francis Bacon, in the Novum Organum, lib. ii., makes the following reference to a machine, or reservoir, of air to which labourers upon wrecks might resort whenever they required to take breath:—

“A hollow vessel, made of metal, was let down equally to the surface of the water, and thus carried with it to the bottom of the sea the whole of the air which it contained. It stood upon three feet—like a tripod—which were in length something less than the height of a man, so that the diver, when he was no longer able to contain his breath, could put his head into the vessel, and having filled his lungs again, return to his work.”

But it was to Dr Edmund Halley, secretary of the Royal Society, that undoubtedly the honour is due of having invented the first really practical diving bell. This is described in the Philosophical Transactions, 1717, in a paper on “The Art of Living Under Water by means of furnishing air at the bottom of the sea in any ordinary depth.” Halley’s bell was constructed of wood, and was covered with lead, which gave it the necessary sinking weight, and was so distributed as to ensure that it kept a perpendicular position when in the water. It was in the form of a truncated cone, 3 ft. in diameter at the top, 5 ft. at the bottom and 8 ft. high. In the roof a lens was introduced for admitting light, and also a tap to let out the vitiated air. Fresh air was supplied to the bell by means of two lead-lined barrels, each having a bung-hole in the top and bottom. To the hole in the top was fixed a leathern tube, weighted in such a manner that it always fell below the level of the bottom of the barrel so that no air could escape. When, however, the tube was turned up by the attendant in the bell, the pressure of the water rising through the hole in the bottom of the barrel, forced the air through the tube at the top and into the diving bell. These barrels were raised and lowered alternately, with such success that Halley says that he, with four others, remained at the bottom of the sea, at a depth of 9 to 10 fathoms, for an hour and a half at a time without inconvenience of any sort.

Fig. 6.—Ordinary Diving Bell.

This type of bell was used by John Smeaton in repairing the foundations of Hexham Bridge in 1778, but instead of weighted barrels, he introduced a force pump for supplying the necessary air. To Smeaton too we are indebted for the first diving bell plant in the form with which we are familiar to-day, that celebrated engineer having designed a square bell of iron, for use on the Ramsgate harbour works, in 1788. This bell, which measured 4½ ft. in length, 3 ft. in width and 4½ ft. in height, and weighed 2½ tons, was made sufficiently heavy to sink by its own weight. It afforded room enough for two men to work, and was supplied with air by a force pump worked from a boat at the surface.

Though the diving bell has been largely superseded by the modern diving apparatus, it is still used on certain classes of work the magnitude of which justifies the expense entailed, for it is not only a question of the cost of the bell, but of the powerful steam-driven crane which is needed to lower and raise it, and also of the gantry on which the crane travels. Sometimes a barge or other vessel is used for working the bell.

At the present day, two types of diving bell are employed—the ordinary bell, and the air-lock bell, which, however, is not so largely used.

On the new national harbour works at Dover, four large diving bells of the ordinary type (fig. 6) were employed. These bells, in each of which from four to six men descended at a time, consisted of steel chambers, open at the bottom, measuring 17 ft. long by 10½ ft. wide by 7 ft. high, and each weighed 35 tons. The ballast, which at once gives the necessary sinking weight to the bell and maintains its equilibrium, consisted of slabs of cast iron bolted to the walls of the bell, inside. Each bell was fitted with loud-sounding telephonic apparatus, by means of which the occupants could communicate either with the men attending the crane or the men looking after the air compressors at the surface. Electric lamps, supplied with current by a dynamo in the compressor room, gave the necessary light inside the bell. Seats and foot rails were provided for the men, and there were racks and hooks for the various tools. Suspended from the roof was an iron skip into which the men threw the excavated material, which was emptied out when the bell was brought to the surface. Air was supplied to the bells by means of steam-driven compressors worked in a house erected on the gantry. The air was delivered into a steel air receiver, and thence it passed through a flexible tube connected to a gun-metal inlet valve in the roof of the diving bell; the pressure of air was regulated according to the depth at which the bell happened to be working. The maximum depth on the Dover works was between 60 and 70 ft., = about 25-30 ℔ to the square inch. A bell was lowered by means of powerful steam-driven cranes, travelling on a gantry, to within a few feet of the water, and the men entered it from a boat. The bell then continued its descent to the bottom, where the men, with pick and shovel, levelled the sea bed ready to receive the large concrete blocks, weighing from 30 to 42 tons apiece. Having completed one section, the bell was moved along to another. The concrete blocks were then lowered and placed in position by helmet divers. The bell divers, clad in thick woollen suits and watertight thigh boots, worked in shifts of about three hours each, and were paid at the rate of from 1s. to 15d. per hour.

Fig. 7.—Air-lock Diving Bell.

A, Working chamber.

B, Air-lock.

C, Pulleys and wire ropes for lowering and raising bell.

D, Iron ladder.

E, Tackles suspended from roof for raising and lowering objects.

F, Air supply pipe.

The cost of an ordinary diving bell, including air compressor, telephonic apparatus and electric light, is from £600 to £1500, according to size.