The accessibility of a port depends upon the depth of its approach channel, which also determines the depth of the docks or basins to which it leads; for it is useless to give a depth to a dock much in excess of the depth down to Approach channels. which there is a prospect of carrying the channel by which it is reached. The great augmentation, however, in the power and capacity for work of modern dredgers, and especially of suction dredgers in sand (see [Dredge]), together with the increasing draught of vessels, has resulted in a considerable increase being made in the available depth of rivers and channels leading to docks, and has necessitated the making of due allowance for the possibility of a reasonable improvement in determining the depth to be given to a new dock. On the other hand, there is a limit to the deepening of an approach channel, depending upon its length, the local conditions as regards silting, and the resources and prospects of trade of the port, for every addition to the depth generally involves a corresponding increase in the cost of maintenance.
| Fig. 6.—Dunkirk Docks and Jetty Channel. |
| Fig. 7.—Tilbury Docks. |
At tidal ports the available depth for vessels should be reckoned from high water of the lowest neap tides, as the standard which is certain to be reached at high tide; and the period during which docks can be entered at each tide depends upon the nature of the approach channel, the extent of the tidal range and the manner in which the entrance to the docks is effected. Thus where the tidal range is very large, as in the Severn estuary, the approach channels to some of the South Wales ports are nearly dry at low water of spring tides, and it would be impossible to make these ports accessible near low tide; whereas at high water, even of neap tides, vessels of large draught can enter their docks. At Liverpool, with a rise of 31 ft. at equinoctial spring tides, owing to the deep channel between Liverpool and Birkenhead and into the outer estuary of the Mersey in Liverpool Bay, maintained by the powerful tidal scour resulting from the filling and emptying of the large inner estuary, access to the river by the largest vessels has been rendered possible, at any state of the tide, by dredging a channel through the Mersey bar; but the docks cannot be entered till the water has risen above half-tide level, and the gates are closed directly after high water. A large floating landing-stage, however, about half a mile in length, in front of the centre of the docks, connected with the shore by several hinged bridges and rising and falling with the tide, enables Atlantic liners to come alongside and take on board or disembark their passengers at any time.
| Fig. 8.—Barry Docks. |
Comparatively small tidal rivers offer the best opportunity of a considerable improvement in the approach channel to a port; for they can be converted into artificially deep channels by dredging, and their necessary maintenance is somewhat aided by the increased influx and efflux of tidal water due to the lowering of the low-water line by the outflow of the ebb tide being facilitated by the deepening. Thus systematic, continuous dredging in the Tyne and the Clyde has raised the Tyne ports and Glasgow into first-class ports. In large tidal rivers and estuaries, docks should be placed alongside a concave bank which the deep navigable channel hugs, as effected at Hull and Antwerp, or close to a permanently deep channel in an estuary, such as chosen for Garston and the entrance to the Manchester ship canal at Eastham in the inner Mersey estuary, and for Grimsby and the authorized Illingham dock in the Humber estuary; for a channel carried across an estuary to deep water requires constant dredging to maintain its depth. Occasionally, extensive draining works and dredging have to be executed to form an adequately deep channel through a shifting estuary and shallow river to a port, as for instance on the Weser to Bremerhaven and Bremen, on the Seine to Honfleur and Rouen, on the Tees to Middlesborough and Stockton, on the Ribble to Preston, on the Maas to Rotterdam and on the Nervion to Bilbao (see [River Engineering]). Southampton possesses the very rare combination of advantages of a well-sheltered and fairly deep estuary, a rise of only 12 ft. at spring tides, and a position at the head of Southampton Water at the confluence of two rivers (fig. 4), so that, with a moderate amount of dredging and the construction of quays along the lower ends of the river with a depth of 35 ft. in front of them at low water, it is possible for vessels of the largest draught to come alongside or leave the quays at any state of the tide. This circumstance has enabled Southampton to attract some of the Atlantic steamers formerly running to Liverpool.
Ports on tideless seas have to be placed where deep water approaches the shore, and where there is an absence of littoral drift. The basins of such ports are always accessible for vessels of the draught they provide for; but they require most efficient protection, and, unlike tidal ports, they are not able on exceptional occasions to admit a vessel of larger draught than the basins have been formed to accommodate. Occasionally, an old port whose approach channel has become inadequate for modern vessels, or from which the sea has receded, has been provided with deep access from the sea by a ship canal, as exemplified by Amsterdam and Bruges; whilst Manchester has become a seaport by similar works (see [Manchester Ship Canal]). In such cases, however, perfectly sheltered open basins are formed inland at the head of the ship canal, in the most convenient available site; and the size of vessels that can use the port depends wholly on the dimensions and facility of access of the ship canal.
Docks require to be so designed that they may provide the maximum length of quays in proportion to the water area consistent with easy access for vessels to the quays; but often the space available does not admit of the adoption of Design of Docks. the best forms, and the design has to be made as suitable as practicable under the existing conditions. On this account, and owing to the small size of vessels in former times, the docks of old ports present a great variety in size and arrangement, being for the most part narrow and small, forming a sort of string of docks communicating with one another, and provided with locks or entrances at suitable points for their common use, as noticeable in the older London and Liverpool docks. Though narrow timber jetties were introduced in some of the wider London docks for increasing the length of quays by placing vessels alongside them, no definite arrangement of docks was adopted in carrying out the large Victoria and Albert docks between 1850 and 1880; whilst the Victoria dock was made wide with solid quays, provided with warehouses, projecting from the northern quay wall, thereby affording a large accommodation for vessels lying end on to the north quay, the Albert dock subsequently constructed was given about half the width of the earlier dock, but made much longer, so that vessels lie alongside the north and south quays in a long line. This change of form, however, was probably dictated by the advantage of stretching across the remainder of the wide bend, in order to obtain a second entrance in a lower reach of the river. The Tilbury docks, the latest and lowest docks on the Thames, were constructed on the most approved modern system, consisting of a series of branch docks separated by wide, well-equipped solid quays, and opening straight into a main dock or basin communicating with the entrance lock, in which vessels can turn on entering or leaving the docks (fig. 7). The most recently constructed Liverpool docks, also, at the northern end have been given this form; and the older docks adjoining them to the south have been transformed by reconstruction into a similar series of branch docks opening into a dock alongside the river wall, leading to a half-tide basin or river entrances (fig. 1). The Manchester and Salford docks were laid out on a precisely similar system, which was also adopted for the most recent docks at Dunkirk (fig. 6) and Prince’s dock at Glasgow (fig. 3), and at some of the principal Rhine ports; whilst the Alexandra dock at Hull resembles it in principle. The basins in tideless seas have naturally been long formed in accordance with this system (fig. 5). The Barry docks furnish an example of the special arrangements for a coal-shipping port, with numerous coal-tips served by sidings (fig. 8).
Tidal basins, as they are termed, are generally interposed in the docks of London between the entrance locks and the docks, with the object of facilitating the passage of vessels out of and into the docks before and after high water, by lowering the Tidal and half-tide basins. water in the basin as soon as the tide has risen sufficiently, and opening the lock gates directly a level has been formed with the tide in the river. Then the vessels which have collected in the basin, when level with the dock, are readily passed successively into the river. The incoming vessels are next brought into the basin, and the gates are closed; and the water in the basin having been raised to the level in the dock, the gates shutting off the basin from the dock when the water was lowered are opened, and the vessels are admitted to the dock. In this manner, by means of an inner pair of gates, the basin can be used as a large lock without unduly altering the water-level in the dock, and saves the delay of locking most of the vessels out and in, the lock being only used for the smaller vessels leaving early or coming in late on the tide. Similar tidal basins have also been provided at Cardiff, Penarth, Barry (fig. 8), Sunderland, Antwerp and other docks.
The large half-tide docks introduced at the most modern Liverpool docks (fig. 1) serve a similar purpose as tidal basins; but being much larger, and approached by entrances instead of locks, the exit and entrance of vessels are effected by lowering their water-level on a rising tide, and opening the gates, which are then closed at high water to prevent the lowering of the water-level in the dock, and to avoid closing the gates against a strong issuing current.