The art of dyeing is a branch of applied chemistry in which the dyer is continually making use of chemical and physical principles in order to bring about a permanent union between the material to be dyed and the colouring General principles. matter applied. If cotton or wool is boiled in water containing finely powdered charcoal, or other insoluble coloured powder, the material is not dyed, but merely soiled or stained. This staining is entirely due to the entanglement of the coloured powder by the rough surface of the fibre, and a vigorous washing and rubbing suffices to remove all but mere traces of the colour. True dyeing can only result when the colouring matter is presented to the fibre in a soluble condition, and is then, by some means or other, rendered insoluble while it is absorbed by, or is in direct contact with, the fibre. There must always be some marked physical or chemical affinity existing between fibre and colouring matter, and this depends upon the physical and chemical properties of both. It is well known that the typical fibres, wool, silk and cotton, behave very differently towards the solution of any given colouring matter, and that the method of dyeing employed varies with each fibre. As a general rule wool has the greatest attraction for colouring matters, and dyes most readily; cotton has the least attraction, while silk occupies in this respect an intermediate position. These differences may be to some extent due to differences of physical structure in the fibres, but they are mainly due to their different chemical composition.

On the other hand, a given fibre, e.g. cotton, behaves quite differently in dyeing towards various colouring matters. Some of these are not at all attracted by it, and are incapable of being used as dyestuffs for cotton. For others cotton exhibits a marked attraction, so that it is readily dyed by mere steeping in a hot solution of the colouring matter. Again, for other colouring matters cotton has little or no attraction, and cannot be dyed with them until it has been previously impregnated or prepared with a metallic salt, tannic acid or some other agent which is capable of combining with the colouring matter and precipitating it as an insoluble coloured compound within or upon the fibre. Such differences of behaviour are to be ascribed to differences in the chemical constitution or atomic arrangement of the various colouring matters.

In the case of the coal-tar colours we are, for the most part, well acquainted with their chemical constitution, and in accordance with this knowledge the chemist has arranged them in the following groups:—(1) Nitro Colours. Classification of colouring matters. (2) Azo Colours, including Amido-azo, Oxy-azo, Tetrazo and Polyazo Colours. (3) Hydrazone Colours. (4) Oxy-quinone Colours, including Quinone-oxime Colours. (5) Diphenylmethane and Triphenylmethane Colours, including Rosaniline, Rosolic acid and Phthaleïne Colours. (6) Quinoneimide Colours, including Indamine, Indophenol, Thiazime, Thiazone, Oxazime, Oxazone, Azine, Induline, Quinoxaline and Fluorindine Colours. (7) Aniline Black. (8) Quinoline and Acridine Colours. (9) Thiazol Colours. (10) Oxy-ketone, Xanthone, Flavone and Cumarine Colours. (11) Indigo. (12) Colours of unknown constitution.

This arrangement of the colouring matters in natural chemical groups is well suited for the requirements of the chemist, but another classification is that based on the mode of their application in dyeing. This is much simpler than the previous one, and being better adapted for the practical purposes of the dyer, as well as for explaining the various methods of dyeing, it is preferred for this article. According to this arrangement colouring matters are classified under the following groups:—(1) Acid Colours. (2) Basic Colours. (3) Direct Colours. (4) Developed Colours. (5) Mordant Colours. (6) Miscellaneous Colours. (7) Mineral Colours. It is well to state that there is no sharp line of division between some of these groups, for many colours are applicable by more than one method, and might quite well be placed in two, or even three, of the above groups. This may be due either to the kind of fibre to which the colouring matter is to be applied, or to certain details in the chemical constitution of the latter which give it a twofold character.

Acid Colours.—These dyestuffs are so called because they dye the animal fibres wool and silk in an acid bath; they do not dye cotton. From a chemical point of view the colouring matters themselves are of an acid character, this being due to the presence in the molecule of nitro (NO2) or sulphonic acid (HSO3) groups. According to their origin and constitution they may be distinguished as nitro compounds, sulphonated azo compounds and sulphonated basic colours. The acid colours are usually sold in the form of their alkali salts, as variously coloured powders soluble in water. For the alkali salts in neutral or alkaline solution wool and silk have little or no affinity, but dyeing rapidly occurs if the solution is acidified with sulphuric acid whereby the colour-acid is liberated. This addition of acid, however, is necessary not only to set free the colour-acid of the dyestuff, but also to alter partially the chemical composition of the fibre, and thus render it capable of uniting more readily with the free colour-acid. It has been shown, namely, that if wool is boiled with dilute sulphuric acid, and then thoroughly washed with boiling-water till free from acid, it acquires the property of being dyed with acid colours even in neutral solution. By this treatment a portion of the wool substance is converted into so-called lanuginic acid, which has a strong attraction for the colour-acid of the dyestuff, with which it forms an insoluble coloured compound. For dyeing wool, the general rule is to charge the dyebath with the amount of dyestuff necessary to give the required colour, say from ½ to 2 or 6 % on the weight of wool employed, along with 10% sodium sulphate (Glauber’s salt) and 4% sulphuric acid (1.84 sp. gr.). The woollen material is then introduced and continually handled or moved about in the solution, while the temperature of the latter is gradually raised to the boiling point in the course of ¾ to 1 hour; after boiling for ¼ to ½ hour longer, the operation is complete, and the material is washed and dried.

In practice, modifications of this normal process may be introduced, in order to ensure the dyeing of an even colour, i.e. free from such irregularities as cloudiness, streaks, &c., which may be due to the quality of the material or to the special properties of the acid colour employed. Materials of a firm, close texture, also the existence of a strong affinity between fibre and colouring matter, do not generally lend themselves to the dyeing of even colours, or to a satisfactory penetration of the material. Some acid colours dye even colours without any difficulty; others, however, do not. The addition of sodium sulphate to the dyebath exerts a restraining action; the dyeing therefore proceeds more slowly and regularly, and a more equal distribution and better absorption of the colouring matter takes place. Other devices to obtain even colours are: the use of old dye-liquors, a diminished amount of acid, the employment of weaker acids, e.g. acetic or formic acid or ammonium acetate, and the entering of the material at a low temperature.

In the application of so-called Alkali Blue the process of dyeing in an acid bath is impossible, owing to the insolubility of the colour-acid in an acid solution. Wool and silk, however, possess an affinity for the alkali salt of the colouring matter in neutral or alkaline solution, hence these fibres are dyed with the addition of about 5% borax; the material acquires only a pale colour, that of the alkali salt, in this dyebath, but by passing the washed material into a cold or tepid dilute solution of sulphuric acid a full bright blue colour is developed, due to the liberation of the colour-acid within the fibre. In the case of other acid colours, e.g. Chromotrope, Chrome Brown, Chromogen, Alizarin Yellow, &c., the dyeing in an acid bath is followed by a treatment with a boiling solution of bichromate of potash, alum, or chromium fluoride, whereby the colouring matter on the fibre is changed into insoluble oxidation products or colour-lakes. This operation of developing or fixing the colour is effected either in the same bath at the end of the dyeing operation, or in a separate bath. See also [Artificial Mordant Colours].

When dyeing with certain acid colours, e.g. Eosine, Phloxine and other allied bright pink colouring matters derived from resorcin, the use of sulphuric acid as an assistant must be avoided, since the colours would thereby be rendered paler and duller, and only acetic acid must be employed.

The properties of the dyes obtained with the acid colours are extremely varied. Many are fugitive to light; on the other hand, many are satisfactorily fast, some even being very fast in this respect. As a rule, they do not withstand the operations of milling and scouring very well, hence acid colours are generally unsuitable for tweed yarns or for loose wool. They are largely employed, however, in dyeing other varieties of woollen yarn, silk yarn, union fabrics, dress materials, leather, &c. Previous to the discovery of the coal-tar colours very few acid colours were known, the most important one being Indigo Extract. Prussian Blue as applied to wool may also be regarded as belonging to this class, also the purple dyestuff known as Orchil or Cudbear.

The following list includes some of the more important acid colours now in use, arranged according to the colour they yield in dyeing:—