The calculation of the elements of the ellipsoid of rotation from measurements of the curvature of arcs in any given azimuth by means of geographical longitudes, latitudes and azimuths is indicated in the article [Geodesy]; reference may be made to Principal Triangulation, Helmert’s Geodasie, and the publications of the Kgl. Preuss. Geod. Inst.:—Lotabweichungen (1886), and Die europ. Längengradmessung in 52° Br. (1893). For the calculation of an ellipsoid with three unequal axes see Comparison of Standards, preface; and for non-elliptical meridians, Principal Triangulation, p. 733.

Gravitation-Measurements.

According to Clairault’s theorem (see above) the ellipticity e of the mathematical surface of the earth is equal to the difference 5⁄2m − β, where m is the ratio of the centrifugal force at the equator to gravity at the equator, and β is derived from the formula G = g(1 + β sin²φ). Since the beginning of the 19th century many efforts have been made to determine the constants of this formula, and numerous expeditions undertaken to investigate the intensity of gravity in different latitudes. If m be known, it is only necessary to determine β for the evaluation of e; consequently it is unnecessary to determine G absolutely, for the relative values of G at two known latitudes suffice. Such relative measurements are easier and more exact than absolute ones. In some cases the ordinary thread pendulum, i.e. a spherical bob suspended by a wire, has been employed; but more often a rigid metal rod, bearing a weight and a knife-edge on which it may oscillate, has been adopted. The main point is the constancy of the pendulum. From the formula for the time of oscillation of the mathematically ideal pendulum, t = 2π√l/G, l being the length, it follows that for two points G1 / G2 = t2² / t1².

In 1808 J.B. Biot commenced his pendulum observations at several stations in western Europe; and in 1817-1825 Captain Louis de Freycinet and L.I. Duperrey prosecuted similar observations far into the southern hemisphere. Captain Henry Kater confined himself to British stations (1818-1819); Captain E. Sabine, from 1819 to 1829, observed similarly, with Kater’s pendulum, at seventeen stations ranging from the West Indies to Greenland and Spitsbergen; and in 1824-1831, Captain Henry Foster (who met his death by drowning in Central America) experimented at sixteen stations; his observations were completed by Francis Baily in London. Of other workers in this field mention may be made of F.B. Lütke (1826-1829), a Russian rear-admiral, and Captains J.B. Basevi and W.T. Heaviside, who observed during 1865 to 1873 at Kew and at 29 Indian stations, particularly at Moré in the Himalayas at a height of 4696 metres. Of the earlier absolute determinations we may mention those of Biot, Kater, and Bessel at Paris, London and Königsberg respectively. The measurements were particularly difficult by reason of the length of the pendulums employed, these generally being second-pendulums over 1 metre long. In about 1880, Colonel Robert von Sterneck of Austria introduced the half-second pendulum, which permitted far quicker and more accurate work. The use of these pendulums spread in all countries, and the number of gravity stations consequently increased: in 1880 there were about 120, in 1900 there were about 1600, of which the greater number were in Europe. Sir E. Sabine[6] calculated the ellipticity to be 1/288.5, a value shown to be too high by Helmert, who in 1884, with the aid of 120 stations, gave the value 1/299.26,[7] and in 1901, with about 1400 stations, derived the value 1/298.3.[8] The reason for the excessive estimate of Sabine is that he did not take into account the systematic difference between the values of G for continents and islands; it was found that in consequence of the constitution of the earth’s crust (Pratt) G is greater on small islands of the ocean than on continents by an amount which may approach to 0.3 cm. Moreover, stations in the neighbourhood of coasts shelving to deep seas have a surplus, but a little smaller. Consequently, Helmert conducted his calculations of 1901 for continents and coasts separately, and obtained G for the coasts 0.036 cm. greater than for the continents, while the value of β remained the same. The mean value, reduced to continents, is

G = 978.03 (1 + 0.005302 sin²φ − 0.000007 sin²2φ) cm/sec².

The small term involving sin² 2φ could not be calculated with sufficient exactness from the observations, and is therefore taken from the theoretical views of Sir G.H. Darwin and E. Wiechert. For the constant g = 978.03 cm. another correction has been suggested (1906) by the absolute determinations made by F. Kühnen and Ph. Furtwängler at Potsdam.[9]

A report on the pendulum measurements of the 19th century has been given by Helmert in the Comptes rendus des séances de la 13e conférence générale de l’Association Géod. Internationale à Paris (1900), ii. 139-385.

A difficulty presents itself in the case of the application of measurements of gravity to the determination of the figure of the earth by reason of the extrusion or standing out of the land-masses (continents, &c.) above the sea-level. The potential of gravity has a different mathematical expression outside the masses than inside. The difficulty is removed by assuming (with Sir G.G. Stokes) the vertical condensation of the masses on the sea-level, without its form being considerably altered (scarcely 1 metre radially). Further, the value of gravity (g) measured at the height H is corrected to sea-level by + 2gH/R, where R is the radius of the earth. Another correction, due to P. Bouguer, is − 3⁄2gδH/ρR, where δ is the density of the strata of height H, and ρ the mean density of the earth. These two corrections are represented in “Bouguer’s Rule”: gH = gs (1 − 2H/R + 3δH / 2ρR), where gH is the gravity at height H, and gs the value at sea-level. This is supposed to take into account the attraction of the elevated strata or plateau; but, from the analytical method, this is not correct; it is also disadvantageous since, in general, the land-masses are compensated subterraneously, by reason of the isostasis of the earth’s crust.

In 1849 Stokes showed that the normal elevations N of the geoid towards the ellipsoid are calculable from the deviations Δg of the acceleration of gravity, i.e. the differences between the observed g and the value calculated from the normal G formula. The method assumes that gravity is measured on the earth’s surface at a sufficient number of points, and that it is conformably reduced. In order to secure the convergence of the expansions in spherical harmonics, it is necessary to assume all masses outside a surface parallel to the surface of the sea at a depth of 21 km. (= R × ellipticity) to be condensed on this surface (Helmert, Geod. ii. 172). In addition to the reduction with 2gH/R, there still result small reductions with mountain chains and coasts, and somewhat larger ones for islands. The sea-surface generally varies but very little by this condensation. The elevation (N) of the geoid is then equal to

N = R ∫π FG−1Δgψψ,