It is hardly too much to say, however, that the earliest systematic application of scientific principles to the study of the effects of an earthquake was made by Mallet in his investigation of the Neapolitan earthquake mentioned above. It is true, the great Calabrian earthquake of 1783 had been the subject of careful inquiry by the Royal Academy of Naples, as also by Deodat Dolomieu and some other scientific authorities; but in consequence of the misconception which at that time prevailed with regard to the nature of seismic activity, the results of the inquiry, though in many ways interesting, were of very limited scientific value. It was reserved for Mallet to undertake for the first time an extensive series of systematic observations in an area of great seismic disturbance, with the view of explaining the phenomena by the application of the laws of wave-motion.

The “Great Neapolitan Earthquake,” by which more than 12,300 lives were lost, was felt in greater or less degree over all Italy south of the parallel of 42°, and has been regarded as ranking third in order of severity among the Neapolitan earthquake, 1857. recorded earthquakes of Europe. The principal shock occurred at about 10 P.M. on the 16th of December 1857; but, as is usually the case, it had been preceded by minor disturbances and was followed by numerous after-shocks which continued for many months. Early in 1858, aided by a grant from the Royal Society, Mallet visited the devastated districts, and spent more than two months in studying the effects of the catastrophe, especially examining, with the eye of an engineer, the cracks and ruins of the buildings. His voluminous report was published in 1862, and though his methods of research and his deductions have in many cases been superseded by the advance of knowledge, the report still remains a memorable work in the history of seismology.

Much of Mallet’s labour was directed to the determination of the position and magnitude of the subterranean source from which the vibratory impulses originated. This is known variously as the seismic centre, centrum, hypocentre, origin or focus. It is often convenient to regard this centre theoretically as a point, but practically it must be a locus or space of three dimensions, which in different cases varies much in size and shape, and may be of great magnitude. That part of the surface of the earth which is vertically above the centre is called the epicentre; or, if of considerable area, the epicentral or epifocal tract. A vertical line joining the epicentre and the focus was termed by Mallet the seismic vertical. He calculated that in the case of the Neapolitan earthquake the focal cavity was a curved lamelliform fissure, having a length of about 10 m. and a height of about 3½ m., whilst its width was inconsiderable. The central point of this fissure, the theoretical seismic centre, he estimated to have been at a depth of about 6½ m. from the surface. Dr C. Davison, in discussing Mallet’s data, was led to the conclusion that there were two distinct foci, possibly situated on a fault, or plane of dislocation, running in a north-west and south-east direction. Mallet located his epicentre near the village of Caggiano, not far from Polla, while the other seems to have been in the neighbourhood of Montemurro, about 25 m. to the south-east.

The intensity, or violence, of an earthquake is greatest in or near the epicentre, whence it decreases in all directions. A line drawn through points of equal intensity forms a curve round the epicentre known as an isoseist, an isoseismal or an isoseismic line. If the intensity declined equally in all directions the isoseismals would be circles, but as this is rarely if ever the case in nature they usually become ellipses and other closed curves. The tract which is most violently shaken was termed by Mallet the meizoseismic area, whilst the line of maximum destruction is known as the meizoseismic line. That isoseismal along which the decline of energy is most rapid was called by K. von Seebach a pleistoseist.

In order to determine the position of the seismic centre, Mallet made much use of the cracks in damaged buildings, especially in walls of masonry, holding that the direction of such fractures must generally be at right angles to that in which the normal earthquake-wave reached them. In this way he obtained the “angle of emergence” of the wave. He also assumed that free-falling bodies would be overthrown and projected in the direction of propagation of the wave, so that the epicentre might immediately be found from the intersection of such directions. These data are, however, subject to much error, especially through want of homogeneity in the rocks, but Mallet’s work was still of great value.

A different method of ascertaining the depth of the focus was adopted by Major C.E. Dutton in his investigation of the Charleston earthquake of the 31st of August 1886 for the U.S. Geological Survey. This catastrophe Charleston earthquake, 1886. was heralded by shocks of greater or less severity a few days previously at Summerville, a village 22 m. north-west of Charleston. The great earthquake occurred at 9.51 P.M., standard time of the 75th meridian, and in about 70 seconds almost every building in Charleston was more or less seriously damaged, while many lives were lost. The epicentral tract was mainly a forest region with but few buildings, and the principal records of seismological value were afforded by the lines of railway which traversed the disturbed area. In many places these rails were flexured and dislocated. Numerous fissures opened in the ground, and many of these discharged water, mixed sometimes with sand and silt, which was thrown up in jets rising in some cases to a height of 20 ft. Two epicentres were recognized—one near Woodstock station on the South Carolina railway, and the other, being the centre of a much smaller tract, about 14 m. south-west of the first and near the station of Rantowles on the Charleston and Savannah line. Around these centres and far away isoseismal lines were drawn, the relative intensity at different places being roughly estimated by the effects of the catastrophe on various structures and natural objects, or, where visible records were wanting, by personal evidence, which is often vague and variable. The Rossi-Forel scale was adopted. This is an arbitrary scale formulated by Professor M.S. de Rossi, of Rome, and Dr F.A. Forel, of Geneva, based mostly on the ordinary phenomena observed during an earthquake, and consisting of ten degrees, of which the lowest is the feeblest, viz. I. Microseismic shock; II. Extremely feeble shock; III. Very feeble shock; IV. Feeble; V. Shock of moderate intensity; VI. Fairly strong shock; VII. Strong shock; VIII. Very strong shock; IX. Extremely strong shock; X. Shock of extreme intensity. Other conventional scales, some being less detailed, have been drawn up by observers in such earthquake-shaken countries as Italy and Japan. A curve, or theoretical isoseismal, drawn through certain points where the decline of intensity on receding from the epicentre seems to be greatest was called by Dutton an “index-circle”; and it can be shown that the radius of such a circle multiplied by the square root of 3 gives the focal depth theoretically. In this way it was computed that in the Charleston earthquake the origin under Woodstock must have had a depth of about 12 m. and that near Rantowles a depth of nearly 8 m. The determination of the index-circle presents much difficulty, and the conclusions must be regarded as only approximate.

It is probable, according to R.D. Oldham, that local earthquakes may originate in the “outer skin” of the earth, whilst a large world-shaking earthquake takes its origin in the deeper part of the “crust,” whence such a disturbance is termed a bathyseism. Large earthquakes may have very extended origins, with no definite centre, or with several foci.

The gigantic disaster known as the “Great Indian Earthquake,” which occurred on the 12th of June 1897, was the subject of careful investigation by the Geological Survey of India and was described in detail by the superintendent, Great Indian earthquake, 1897. R.D. Oldham. It is sometimes termed the Assam earthquake, since it was in that province that the effects were most severe, but the shocks were felt over a large part of India, and indeed far beyond its boundaries. Much of the area which suffered most disturbance was a wild country, sparsely populated, with but few buildings of brick or stone from which the violence of the shocks could be estimated. The epicentral tract was of great size, having an estimated area of about 6000 sq. m., but the mischief was most severe in the neighbourhood of Shillong, where the stonework of bridges, churches and other buildings was absolutely levelled to the ground. After the main disturbance, shocks of greater or less severity continued at intervals for many weeks. It is supposed that this earthquake was connected with movement of subterranean rock-masses of enormous magnitude along a great thrust-plane, or series of such planes, having a length of about 200 m. and a maximum breadth of not less than 50 m. It is pointed out by Oldham that this may be compared for size with the great Faille du Midi in Belgium, which is known to extend for a distance of 120 m. The depth of the principal focus, though not actually capable of determination, was probably less than 5 m. from the surface. From the focus many secondary faults and fractures proceeded, some reaching the surface of the ground. Enormous landslips accompanied the earthquake, and as an indirect effect of these slides the form of the water-courses became in certain cases modified. Permanent changes of level were also observed.

Eight years after the great Assam earthquake India was visited by another earthquake, which, though less intense, resulted in the loss of about 20,000 lives. This catastrophe is known as the Kangra earthquake, since its Kangra earthquake, 1905. centre seems to have been located in the Kangra valley, in the north-west Himalaya. It occurred on the 4th of April 1905, and the first great shocks were felt in the chief epifocal district at about 6.9 a.m., Madras time. Although the tract chiefly affected was around Kangra and Dharmsala, there was a subordinate epifocal tract in Dehra Dun and the neighbourhood of Mussoorie, whilst the effects of the earthquake extended in slight measure to Lahore and other cities of the plain. It is estimated that the earthquake was felt over an area of about 1,625,000 m. Immediately after the calamity a scientific examination of its effects was made by the Geological Survey of India, and a report was drawn up by the superintendent, C.S. Middlemiss.

The great earthquake, which, with the subsequent fire, wrought such terrible destruction in and around San Francisco on the 18th of April 1906, was the most disastrous ever recorded in California. It occurred between 10 and 15 minutes California earthquake, 1906. after 5 A.M., standard time of the 120th meridian. The moment at which the disaster began and the duration of the shock varied at different localities in the great area over which the earthquake was felt. At San Francisco the main shock lasted rather more than one minute.