= d(p1δq1 + p2δq2 + ...) − δΤ,
dt

(4)

by § 1 (14). The last member may be written

ṗ1δq1 + p1δq˙1 + ṗ2δq2 + p2δq˙2 + ... − ∂Τδq˙1 − ∂Τδq1 − ∂Τδq˙2 − ∂Τδq2 − ...
∂q˙1 ∂q1∂q˙2 ∂q2

(5)

Hence, omitting the terms which cancel in virtue of § 1 (13), we find

Σm(ẍδx + ÿδy + z¨δz) = (ṗ1 − ∂Τ) δq1 + (ṗ2 − ∂Τ) δq2 + ...
∂q1 ∂q2

(6)

For the right-hand side of (2) we have

Σ(Xδx + Yδy + Zδz) = Q1δq1 + Q2δq2 + ... ,